Skip to main content

Rare Variant Analysis in Unrelated Individuals

  • Chapter
  • First Online:
  • 943 Accesses

Part of the book series: Translational Bioinformatics ((TRBIO,volume 13))

Abstract

Although the genome-wide association studies, which are based on common disease-common variants (CDCV) hypothesis, have great success in dissecting the genetic architecture of human diseases, their limitation of explaining the missing heritability motivated researchers to test the hypothesis that rare variants contribute to the variation of common diseases, that is, common disease/rare variant (CDRV) hypothesis. The fast developed high-throughput next generation of sequencing technologies has made the studies of rare variants practicable. Statistical approaches to test associations between a phenotype and rare variants are rapidly developing. Overall, the key idea of these methods is to test a set of rare variants in a defined region or regions by collapsing or aggregating rare variants. To improve the statistical power, several weighting strategies to the rare variants and/or adding the informative covariates in the model have been published. In this chapter, some of these methods which can use unrelated individuals and family members are introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  CAS  Google Scholar 

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agresti A. Categorical data analysis. New York: Wiley-Interscience; 2002.

    Book  Google Scholar 

  • Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11(11):773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  CAS  PubMed  Google Scholar 

  • Bonnefond A, Clément N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S, Hercberg S, Hadjadj S, Balkau B, Marre M, Lantieri O, Langenberg C, Bouatia-Naji N, The Meta-Analysis of Glucose and Insulin-Related Traits Consortium (MAGIC), Charpentier G, Vaxillaire M, Rocheleau G, Wareham NJ, Sladek R, MI MC, Dina C, Barroso I, Jockers R, Froguel P. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet. 2012;44:297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL, Grundy SM, Hobbs HH. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A. 2006;103(6):1810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661–78.

    Article  CAS  Google Scholar 

  • Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Elston RC, Zhu X. Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS). Genet Epidemiol. 2011;35(5):398–409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson G. Hints of hidden heritability in GWAS. Nat Genet. 2010;42(7):558–60.

    Article  CAS  PubMed  Google Scholar 

  • Gudbjartsson DF, Walters GB, Thorleifsson G, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–15.

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Lin S. Generalized linear modeling with regularization for detecting common disease rare haplotype association. Genet Epidemiol. 2009;33(4):308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han F, Pan W. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered. 2010;70(1):42–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G, Zillikens MC, Speliotes EK, Magi R, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010;42(11):949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindorff LA, MacArthur J (European Bioinformatics Institute), Wise A, Junkins HA, Hall PN, Klemm AK, Manolio TA. A catalog of published genome-wide association studies. 2011. Available at: www.genome.gov/gwastudies. Accessed 15 Sept 2012.

  • Hoffmann TJ, Marini NJ, Witte JS. Comprehensive approach to analyzing rare genetic variants. PLoS One. 2010;5(11):e13584. https://doi.org/10.1371/journal.pone.0013584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lettre G, Jackson AU, Gieger C, et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet. 2008;40:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83(3):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Byrnes AE, Li M. To identify associations with rare variants, just WHaIT: weighted haplotype and imputation-based tests. Am J Hum Genet. 2010;87(5):728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DY, Tang ZZ. A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet. 2011;89:354–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009;5(2):e1000384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. Testing for an unusual distribution of rare variants. PLoS Genet. 2011;7:e1001322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324(5925):387–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neyman J, Scott E. On the use of c(a) optimal tests of composite hypotheses. Bull Int Stat Inst. 1966;41:477–97.

    Google Scholar 

  • Price AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wei L-J, Sunyaev SR. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet. 2010;86:832–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet. 2001;69(1):124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S. Human nonsynonymous SNPs: server and survey. Nucleic Acids Res. 2002;30:3894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weedon MN, Lango H, Lindgren CM, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare variant association testing for sequencing data using the sequence kernel association test (SKAT). Am J Hum Genet. 2011;89:82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zollner S. Extending rare-variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet. 2010;87(5):604–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelterman D, Chen C. Homogeneity tests against central-mixture alternatives. J Am Stat Assoc. 1988;83(401):179–82.

    Article  Google Scholar 

  • Zhu X, Fejerman L, Luke A, Adeyemo A, Cooper RS. Haplotypes produced from rare variants in the promoter and coding regions of angiotensinogen contribute to variation in angiotensinogen levels. Hum Mol Genet. 2005;14(5):639–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Feng T, Li Y, Lu Q, Elston RC. Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol. 2010;34(2):171–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109(4):1193–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, T., Zhu, X. (2018). Rare Variant Analysis in Unrelated Individuals. In: Yao, Y. (eds) Applied Computational Genomics. Translational Bioinformatics, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-1071-3_4

Download citation

Publish with us

Policies and ethics