Skip to main content

Optical Imaging with Signal Processing for Non-invasive Diagnosis in Gastric Cancer: Nonlinear Optical Microscopy Modalities

  • Conference paper
  • First Online:
Machine Intelligence and Signal Analysis

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 748))

Abstract

Gastric cancer or stomach cancer has high incident rate and the leading cause of mortality worldwide. GC is usually undetected and asymptotic till the advanced chronic stages of its progression. Despite much advancement of technologies, still diagnosis is poor. This makes GC a fatal chronic disease. Over two decades of advancement in nonlinear optical (NLO) microscopy, it has become a powerful tool for laser-based imaging of tissue. Each of NLO modality is sensitive for specific molecule or structure. This may be useful for the understanding of the complex biological system in cancer detection. Here, we will discuss label-free, non-invasive endoscopy-based methods for morphological imaging by combining coherent anti-Stokes Raman scattering (CARS), Two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) methods of NLO microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay, J., Soerjomataram, I., Dikshit, R., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015). https://doi.org/10.1002/ijc.29210

    Article  Google Scholar 

  2. Schneeweiss, S.: Sensitivity analysis of the diagnostic value of endoscopies in cross-sectional studies in the absence of a gold standard. Int. J. Technol. Assess. Health Care 16, 834–841 (2000)

    Article  Google Scholar 

  3. Yoon, H., Kim, N.: Diagnosis and management of high risk group for gastric cancer. Gut Liver 9, 5–17 (2015). https://doi.org/10.5009/gnl14118

    Article  Google Scholar 

  4. Rahman, R., Asombang, A.W., Ibdah, J.A.: Characteristics of gastric cancer in Asia. World J. Gastroenterol. 20, 4483–4490 (2014). https://doi.org/10.3748/wjg.v20.i16.4483

    Article  Google Scholar 

  5. Schmidt, N., Peitz, U., Lippert, H., Malfertheiner, P.: Missing gastric cancer in dyspepsia. Aliment. Pharmacol. Ther. 21, 813–820 (2005). https://doi.org/10.1111/j.1365-2036.2005.02425.x

    Article  Google Scholar 

  6. Maconi, G., Manes, G., Porro, G.-B.: Role of symptoms in diagnosis and outcome of gastric cancer. World J. Gastroenterol. 14, 1149–1155 (2008). https://doi.org/10.3748/wjg.14.1149

    Article  Google Scholar 

  7. Kim, S.J., Cho, Y.S., Moon, S.H., et al.: Primary Tumor 18F-FDG avidity affects the performance of 18F-FDG PET/CT for detecting Gastric Cancer recurrence. J. Nucl. Med. 57, 544–550 (2016). https://doi.org/10.2967/jnumed.115.163295

    Article  Google Scholar 

  8. Schöder, H., Gönen, M.: Screening for cancer with PET and PET/CT: potential and limitations. J. Nucl. Med. 48, 4–18 (2007)

    Article  Google Scholar 

  9. Hallinan, J.T.P.D., Venkatesh, S.K.: Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response. Cancer Imaging 13, 212–227 (2013). https://doi.org/10.1102/1470-7330.2013.0023

    Article  Google Scholar 

  10. Bentley-Hibbert, S., Schwartz, L.: Use of Imaging for GI Cancers. J. Clin. Oncol. 33, 1729–1736 (2015). https://doi.org/10.1200/JCO.2014.60.2847

    Article  Google Scholar 

  11. Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125 (2013)

    Google Scholar 

  12. Adur, J., Carvalho, H.F., Cesar, C.L., Casco, V.H.: Nonlinear optical microscopy signal processing strategies in cancer. Cancer Inform 13, 67–76 (2014). https://doi.org/10.4137/CIN.S12419

    Article  Google Scholar 

  13. Kobat, D., Durst, M.E., Nishimura, N., et al.: Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009). https://doi.org/10.1364/OE.17.013354

    Article  Google Scholar 

  14. De Kumar, A., Goswami, D.: Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach. Int. Rev. Phys. Chem. 30, 275–299 (2011). https://doi.org/10.1080/0144235X.2011.603237

    Article  Google Scholar 

  15. Huff, T.B., Shi, Y., Fu, Y., et al.: Multimodal nonlinear optical microscopy and applications to central nervous system imaging. IEEE J. Sel. Top. Quantum Electron. 14, 4–9 (2008). https://doi.org/10.1109/JSTQE.2007.913419

    Article  Google Scholar 

  16. Streets, A.M., Li, A., Chen, T., Huang, Y.: Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging. https://doi.org/10.1021/ac5013706

  17. Duncan, M.D., Reintjes, J., Manuccia, T.J.: Scanning coherent anti-stokes Raman microscope. Opt. Lett. 7, 350 (1982). https://doi.org/10.1364/OL.7.000350

    Article  Google Scholar 

  18. Adur, J., Carvalho, H.F., Cesar, C.L., Casco, V.H.: Nonlinear microscopy techniques: principles and biomedical applications. Microsc. Anal. (2016). https://doi.org/10.5772/63451

    Article  Google Scholar 

  19. Cheng, Ji-Xin, X.: Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications (2003). https://doi.org/10.1021/jp035693v

  20. Luo, X., Cheng, C., Tan, Z., et al.: Emerging roles of lipid metabolism in cancer metastasis. Mol. Cancer 16, 76 (2017). https://doi.org/10.1186/s12943-017-0646-3

    Article  Google Scholar 

  21. Potma, E.O., Xie, X.S.: Detection of single lipid bilayers with coherent anti-stokes Raman scattering (CARS) microscopy. J. Raman Spectrosc. 34, 642–650 (2003). https://doi.org/10.1002/jrs.1045

    Article  Google Scholar 

  22. Légaré, F., Evans, C.L., Ganikhanov, F., et al.: Towards CARS endoscopy. Opt. Express 14, 4427 (2006). https://doi.org/10.1364/OE.14.004427

    Article  Google Scholar 

  23. Perry, S.W., Burke, R.M., Brown, E.B.: Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann. Biomed. Eng. 40, 277–291 (2012). https://doi.org/10.1007/s10439-012-0512-9

    Article  Google Scholar 

  24. Benninger, R.K.P., Piston, D.W.: Two-photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. cell Biol. Chapter 4: Unit 4(11), 1–24 (2013). https://doi.org/10.1002/0471143030.cb0411s59

  25. Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248, 273–276 (1990). https://doi.org/10.1126/science.2321027

    Article  Google Scholar 

  26. Hou, J., Wright, H.J., Chan, N., et al.: Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption. https://doi.org/10.1117/1.jbo.21.6.060503

  27. Lee, J.W., Kim, E.Y., Yoo, H.M., et al.: Changes of lipid profiles after radical gastrectomy in patients with gastric cancer. Lipids Health Dis. 14, 21 (2015). https://doi.org/10.1186/s12944-015-0018-1

    Article  Google Scholar 

  28. Campagnola, P.J., Dong, C.-Y.: Second harmonic generation microscopy: principles and applications to disease diagnosis. Laser Photon. Rev. 5, 13–26 (2011). https://doi.org/10.1002/lpor.200910024

    Article  Google Scholar 

  29. Campagnola, P.J., Loew, L.M.: Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003). https://doi.org/10.1038/nbt894

    Article  Google Scholar 

  30. Samim, M., Sandkuijl, D., Tretyakov, I., et al.: Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams. Int. J. Mol. Sci. 14, 18520–18534 (2013). https://doi.org/10.3390/ijms140918520

    Article  Google Scholar 

  31. So, P.T.C., Yew, E.Y.S., Rowlands, C.: High-throughput nonlinear optical microscopy. Biophys. J. 105, 2641–2654 (2013). https://doi.org/10.1016/j.bpj.2013.08.051

    Article  Google Scholar 

  32. Hung, Y.P., Albeck, J.G., Tantama, M., Yellen, G.: Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011). https://doi.org/10.1016/j.cmet.2011.08.012

    Article  Google Scholar 

  33. Skala, M.C., Riching, K.M., Gendron-Fitzpatrick, A., et al.: In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA 104, 19494–19499 (2007). https://doi.org/10.1073/pnas.0708425104

    Article  Google Scholar 

  34. Skala, M., Ramanujam, N.: Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol. Biol. 594, 155–162 (2010). https://doi.org/10.1007/978-1-60761-411-1_11

    Article  Google Scholar 

  35. Pittet, J.-C., Freis, O., Vazquez-Duchêne, M.-D., et al.: Evaluation of elastin/collagen content in human dermis in-vivo by multiphoton tomography—variation with depth and correlation with aging. Cosmetics 1, 211–221 (2014). https://doi.org/10.3390/cosmetics1030211

    Article  Google Scholar 

  36. Barcus, C.E., O’Leary, K.A., Brockman, J.L., et al.: Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 19, 9 (2017). https://doi.org/10.1186/s13058-017-0801-1

    Article  Google Scholar 

  37. Cicchi, R., Kapsokalyvas, D., De Giorgi, V., et al.: Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J. Biophoton. 3, 34–43 (2009). https://doi.org/10.1002/jbio.200910062

    Article  Google Scholar 

  38. Case, A., Brisson, B.K., Durham, A.C., et al.: Identification of prognostic collagen signatures and potential therapeutic stromal targets in canine mammary gland carcinoma. PLoS ONE 12, e0180448 (2017). https://doi.org/10.1371/journal.pone.0180448

    Article  Google Scholar 

  39. Provenzano, P.P., Inman, D.R., Eliceiri, K.W., et al.: Collagen density promotes mammary tumor initiation and progression. https://doi.org/10.1186/1741-7015-6-11

  40. Wang, B.-L., Wang, R., Liu, R.J., et al.: Origin of shape resonance in second-harmonic generation from metallic nanohole arrays. https://doi.org/10.1038/srep02358

  41. Ambekar, R., Lau, T.-Y., Walsh, M., et al.: Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed. Opt. Express. 3, 2021–2035 (2012). https://doi.org/10.1364/BOE.3.002021

    Article  Google Scholar 

  42. Adur, J., Zeitoune, A., Sanchez Salas, K., et al.: Epithelial ovarian cancer diagnosis of second-harmonic generation images: a semiautomatic collagen fibers quantification protocol. Cancer Inform. (2017). https://doi.org/10.1177/1176935117690162

    Article  Google Scholar 

  43. Hu, W., Li, H., Wang, C., et al.: Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method. J. Biomed. Opt. 17, 26007 (2012). https://doi.org/10.1117/1.JBO.17.2.026007

    Article  Google Scholar 

  44. Mostaço-Guidolin, L.B., Ko, A.C.-T., Wang, F., et al.: Collagen morphology and texture analysis: from statistics to classification. https://doi.org/10.1038/srep02190

  45. Wu, P.-C., Hsieh, T.-Y., Tsai, Z.-U., Liu, T.-M.: In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. https://doi.org/10.1038/srep08879

  46. Mohanaiah, P., Sathyanarayana, P., Gurukumar, L.: Image texture feature extraction using GLCM approach. Int. J. Sci. Res. Publ. 3, 2250–3153 (2013)

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore. We are also thankful to the Council of Scientific and Industrial Research grant no 37(1693)/17/EMR-II and Department of Science and Technology as Ramanujan fellowship grant no SB/S2/RJN-132/20/5. We appreciate our lab colleagues for insightful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hem Chandra Jha .

Editor information

Editors and Affiliations

Ethics declarations

Authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S., Jha, H.C. (2019). Optical Imaging with Signal Processing for Non-invasive Diagnosis in Gastric Cancer: Nonlinear Optical Microscopy Modalities. In: Tanveer, M., Pachori, R. (eds) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol 748. Springer, Singapore. https://doi.org/10.1007/978-981-13-0923-6_52

Download citation

Publish with us

Policies and ethics