Skip to main content

T Wave Analysis: Potential Marker of Arrhythmia and Ischemia Detection-A Review

  • Conference paper
  • First Online:
Cognitive Informatics and Soft Computing

Abstract

T wave is the end potential waveform or segment of cardiac cycle. It is basically originated by the different layers of ventricular myocardium and their differences in repolarization time. This study analyzes the conventional techniques and automatic popular methods associated with T Wave Alternans (TWA) and their approaches towards ischemic and arrhythmic interventions. This review work is divided into two major parts i.e. (i) Analysis of T wave: association of T wave with ischemia and arrhythmia (ii) T wave detection techniques. This analytical literature survey also leads to the conclusion, where the importance of T wave analysis significantly inculcates ideological researcher and clinical mindset for approaching critical cardiac diseases in multimodal approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martínez, J.B., Olmos, S.: Methodological principles of t wave alternans analysis: a unified framework. IEEE Trans. Biomed. Eng. 52(4) (2005)

    Google Scholar 

  2. Hänninen, H., Takala, P., Rantonen, J., et al.: ST-T integral and T-wave amplitude in detection of exercise-induced myocardial ischemia evaluated with body surface potential mapping. J. Electrocardiol. 36(2) (2003)

    Google Scholar 

  3. Nearing, B.D., Oesterle, S.N., Verrier, R.L.: Quantification of ischaemia induced vulnerability by precordial T wave alternans analysis in dog and human. Cardiovasc. Res. 28, 1440–1449 (1994)

    Article  Google Scholar 

  4. Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Sci. 252, 437–440 (1991)

    Article  Google Scholar 

  5. Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92, 541–549 (2002)

    Article  Google Scholar 

  6. Martinez, J.P., Olmos, S., Wagner, G., Laguna, P.: Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE Trans. Biomed. Eng. 53, 701–711 (2006)

    Article  Google Scholar 

  7. Salah, S.A., Kristen, N.R., Mary, G.C.: Increased T wave complexity can indicate subclinical myocardial ischemia in asymptomatic adults. J. Electrocardiol. 44, 684–688 (2011)

    Article  Google Scholar 

  8. Estes III, N.A., Michaud, G., Zipes, D.P., El-Sherif, N., Venditti, F.J., Rosenbaum, D.S., Albrecht, P., Wang, P.J., Cohen, R.J.: Electrical alternans during rest and exercise as predictors of vulnerability to ventricular arrhythmias. Am. J. Cardiol. 80, 1314–1318 (1997)

    Article  Google Scholar 

  9. Zareba, W., Moss, A.J., Le Cessie, S., Hall, W.: T wave alternans in idiopathic long QT syndrome. J. Am. Coll. Cardiol. 23, 1541–1546 (1994)

    Article  Google Scholar 

  10. Kwan, T., Feit, A., Alam, M., Afflu, E., Clark, L.T.: ST-T alternans and myocardial ischemia. Angiol. 50(3), 217–222 (1999)

    Article  Google Scholar 

  11. Rosenbaum, D.S., Jackson, L.E., Smith, J.M., Garan, H., Ruskin, J.N., Cohen, R.J.: Electrical alternans and vulnerability to ventricular arrhytimias. N. Engl. J. Med. 330(4), 235–241 (1994)

    Article  Google Scholar 

  12. Verrier, R.L., Nearing, B.D., MacCallum, G., Stone, P.H.,: T-wave alternans during ambulatory ischemia in patients with stable coronary disease. Ann. Noninvasive Electrocardiol. pt. 1 1(2), 113–120 (1996)

    Google Scholar 

  13. Turitto, G., El-Sherif, N.: Alternans of the ST segment in variant angina. incidence, time course and relation to ventricular arrhythmias during ambulatory electrocardiographic recording. Chest 93, 587–591 (1988)

    Article  Google Scholar 

  14. Verrier, R.L., Nearing, B.D., LaRovere, M.T., Pinna, G.D., Mittleman, M.A., Bigger, J.T., Schwartz, P.J.: Ambulatory electrocardiogram- based tracking of T wave alternans in postmyocardial infarction patients to assess risk of cardiac arrest or arrhythmic death. J. Cardiovasc. Electrophysiol. 14(7), 705–711 (2003)

    Article  Google Scholar 

  15. Adachi, K., Ohnisch, Y., Shima, T., Yamashiro, K., Takei, A., Tamura, N., Yokoyama, M.: Determinant of microvolt-level T-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34(2), 374–380 (1999)

    Article  Google Scholar 

  16. Blanco-Velasco, M., et al.: Nonlinear trend estimation of the ventricular repolarization segment for T-Wave alternans detection. IEEE Trans. Biomed. Eng. 57(10) October (2010)

    Google Scholar 

  17. Narayan SM.: T-Wave alternans testing for ventricular arrhythmias. progress in cardiovascular diseases. 51(2), 118–127 (September/October) (2008)

    Google Scholar 

  18. Kleinfeld, M.J., Rozanski, J.J.: Alternans of the ST segment in Prinzmetal’s angina. Circ. 55, 574–577 (1977)

    Article  Google Scholar 

  19. Raeder, E.A., Rosenbaum, D.S., Bhasin, R., et al.: Alternans of electrocardiographic T-wave may predict lifethreatening ventricular arrhythmias. N. Engl. J. Med. 271–272 (1992)

    Google Scholar 

  20. Wellens, H.J.: Isolated electrical alternans of the T wave. Chest 62, 319–321 (1972)

    Article  Google Scholar 

  21. Smith, J.M., Clancy, E., Valeri, C., et al.: Electrical alternans and cardiac electrical instability. Circ. 77, 110–121 (1988)

    Article  Google Scholar 

  22. Gritzali, F., Frangakis, G., Papakonstantinou, G.: Detection of the P and T Waves in an ECG. Comput. Biomed. Res. 22, 83–91 (1989)

    Article  Google Scholar 

  23. Boix, M., Cantó, B., Cuesta, D., Micó, P.: Using the wavelet transform for T-wave alternans detection. Math. Comput. Model. 50, 738–742 (2009)

    Article  MathSciNet  Google Scholar 

  24. Costas, P., Dimitrios, I.F., Aristidis, L., Christos, S.S., Lampros, K.M.: Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGs. J. Electrocardiol. 35(1) (2002)

    Google Scholar 

  25. Elgendi, M., Eskofier, B., Abbott, D.: Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sens. 15, 17693–17714 (2015)

    Article  Google Scholar 

  26. Pan, J., Tompkins, W.J.: A realtime QRS detection algorithm. IEEE Trans. BME 32, 230–236 (1985)

    Article  Google Scholar 

  27. Surawicz, B., Fisch, C.: Cardiac alternans: diverse mechanisms and clinical manifestations. J. Am. Coll. Cardiol. 20, 483 (1992)

    Article  Google Scholar 

  28. Verrier, R.L., Nearing, B.D.: Electrophysiologic basis for T-wave alternans as an index of vulnerability to ventricular fibrillation. J. Cardiovasc. Electrophysiol. 5, 445 (1994)

    Article  Google Scholar 

  29. Verrier, R.L., Cohen, R.J.: Risk identification and markers of susceptibility. In: Spooner P, Rosen MR. (eds.) Foundations of cardiac arrhythmias. Marcel Dekker, New York, NY, p. 745 (2000)

    Google Scholar 

  30. El-Sherif, N., Turitto, G., Pedalino, R.P., et al.: T-wave alternans and arrhythmia risk stratification. Ann. Noninvasiv. Electrocardiol. 6, 323 (2001)

    Article  Google Scholar 

  31. Smith, J.M., Clancy, E.A., Valeri, C.R., et al.: Electrical alternans and cardiac electrical instability. Circ. 77, 110 (1988)

    Article  Google Scholar 

  32. Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Sci. 252, 437 (1991)

    Article  Google Scholar 

  33. Rosenbaum, D.S., Jackson, L.E., Smith, J.M., et al.: Electrical alternans and vulnerability to ventricular arrhythmia. N. Engl. J. Med. 330, 235 (1994)

    Article  Google Scholar 

  34. Nearing, B.D., Oesterle, S.N., Verrier, R.L.: Quantification of ischaemia-induced vulnerability by precordial T wave alternans analysis in dog and human. Cardiovasc. Res. 28, 1440 (1994)

    Article  Google Scholar 

  35. Hohnloser, S.H., Klingenheben, T., Yi-Gang, L., et al.: T-wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: Prospective comparison with conventional risk markers. J. Cardiovasc. Electrophysiol. 9, 1258 (1998)

    Article  Google Scholar 

  36. Adachi, K., Ohnishi, Y., Shima, T., et al.: Determinant of microvolt-level T-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34, 374 (1999)

    Article  Google Scholar 

  37. Klingenheben, T., Zabel, M., D’Agostino, R.B., et al.: Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 356, 651 (2000)

    Article  Google Scholar 

  38. Gold, M.R., Bloomfield, D.M., Anderson, K.P., et al.: A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J. Am. Coll. Cardiol. 36, 2247 (2000)

    Article  Google Scholar 

  39. Hennersdorf, M.G., Neibch, V., Perings, C., et al.: T-wave alternans and ventricular arrhythmias in arterial hypertension. Hypertens. 37, 199 (2001)

    Article  Google Scholar 

  40. Nearing, B.D., Verrier, R.L.: Modified moving average method for T-wave alternans analysis with high accuracy to predict ventricular fibrillation. J. Appl. Physiol. 92, 541 (2002)

    Article  Google Scholar 

  41. Ikeda, T., Saito, H., Tanno, K., et al.: T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am. J. Cardiol. 89, 79 (2002)

    Article  Google Scholar 

  42. Verrier, R.L., Nearing, B.D., LaRovere, M.T., et al.: Ambulatory ECG-based tracking of T-wave alternans in post-MI patients to assess risk of cardiac arrest or arrhythmic death. J. Cardiovasc. Electrophysiol. 14, 70S (2003)

    Article  Google Scholar 

  43. Richard, L.V., Bruce, D.N.: Ambulatory ECG monitoring of T-Wave alternans for arrhythmia risk assessment. J. Electrocardiol. 36(Supplement) (2003)

    Google Scholar 

  44. Kulvicius, T., Tamošiunaite, M., Vaišnys, R.: T wave alternans features for automated detection. Informatica 16(4), 587–602 (2005)

    Google Scholar 

  45. Krimi, S., Ouni, K., Ellouze, N.: T-Wave detection based on an adjusted wavelet transform modulus maxima. world academy of science, engineering and technology,. Int. J. Med. Health Sci. 1(3) (2007)

    Google Scholar 

  46. Khaustov, A., Nemati, S., Clifford, G.D.: An open-source Standard T-Wave alternans detector for benchmarking. Comput. Cardiol. 35, 509–512 (2008)

    Google Scholar 

  47. Martinez, J., Olmos, S., Laguna, P.: Evaluation of a wavelet based ECG waveform detector on the QT database. Comput. Cardiol. 2000(27), 81–84 (2000)

    Google Scholar 

  48. Mehta, S., Lingayat, N., Sanghvi, S.: Detection and delineation of P and T waves in 12-lead electrocardiograms. Expert Syst. 26(1) February (2009)

    Google Scholar 

  49. Goya-Esteban, R., et al.: Nonparametric signal processing validation in T-Wave alternans detection and estimation. IEEE Trans. Biomed. Eng. 61(4) April (2014)

    Google Scholar 

  50. Goldwasser, D., et al.: A new method of filtering T waves to detect hidden P waves in electrocardiogram signals. Europace 13, 1028–1033 (2011)

    Article  Google Scholar 

  51. Verrier, R.L., et al.: Microvolt T-Wave alternans, physiological basis, methods of measurement, and clinical utility—consensus guideline by international society for holter and noninvasive electrocardiology. J. Am. Coll. Cardiol. 58(13) (2011)

    Google Scholar 

  52. Cohen, R.J.: TWA and Laplacian imaging. In: Zipes D.P., Jalife J, (eds.) Cardiac electrophysiology: from cell to bedside, vol. 889, 5th edn. Saunders, Philadelphia (2009)

    Google Scholar 

  53. Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92, 541–549 (2002)

    Article  Google Scholar 

  54. Wana, X., Li, Y., Xia, C., Wu, M., Liang, J., Wang, N.: A T-wave alternans assessment method based on least squares curve fitting technique. Meas. 86, 93–100 (2016)

    Article  Google Scholar 

  55. Latif, M., Bakhshi, A.D., Ali, U., Siddiqui, RA.: Empirical mode decomposition on T-Wave alternans detection. J. Image Graph. 4(2) December (2016)

    Google Scholar 

  56. Cesari, M., Mehlsen, J., Mehlsen, A.B., Sorensen, H.B.D.: A new wavelet-based ECG delineator for the evaluation of the ventricular innervation. IEEE J. Transl. Eng. Health Med. 4(5), 2000215 July (2017)

    Google Scholar 

  57. Ramanan, T., et al.: Does manual T-wave window adjustment affect microvolt T-wave alternans results in patients with structural heart disease? J. Electrocardiol. 49(6), 967–972, Nov—Dec (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Kumar Bhoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhoi, A.K., Sherpa, K.S., Khandelwal, B., Mallick, P.K. (2019). T Wave Analysis: Potential Marker of Arrhythmia and Ischemia Detection-A Review. In: Mallick, P., Balas, V., Bhoi, A., Zobaa, A. (eds) Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 768. Springer, Singapore. https://doi.org/10.1007/978-981-13-0617-4_13

Download citation

Publish with us

Policies and ethics