Skip to main content

The Significance of Single-Cell Biomedicine in Stem Cells

  • Chapter
  • First Online:
Single Cell Biomedicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1068))

Abstract

Clinical application of stem cells (SCs) progresses significantly in the treatment of a large number of diseases, e.g. leukemia, respiratory diseases, kidney disease, cerebral palsy, autism, or autoimmune diseases. Of those, the population, biological phenotypes, and functions of individual SCs are mainly concerned, due to the lack of cell separation and purification processes. The single-cell technology, including microfluidic technology and single-cell genome amplification technology, is widely used to study SCs and gains some recognitions. The present review will address the importance of single-cell technologies in the recognition and heterogeneity of SCs and highlight the significance of current single-cell approaches in the understanding of SC phenotypes. We also discuss the values of single-cell studies to overcome the bottleneck in explore of biological mechanisms and reveal the therapeutic potentials of SCs in diseases, especially tumor-related diseases, as new diagnostic and therapeutic strategies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker RA, Parmar M, Studer L, Takahashi J (2017 Nov 2) Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: Dawn of a new era. Cell Stem Cell 21(5):569–573. https://doi.org/10.1016/j.stem.2017.09.014

    Article  PubMed  CAS  Google Scholar 

  2. Devine H, Patani R (2017) The translational potential of human induced pluripotent stem cells for clinical neurology: the translational potential of hiPSCs in neurology. Cell Biol Toxicol 33(2):129–144

    Article  PubMed  Google Scholar 

  3. Kumar D, Anand T, Kues WA (2017) Clinical potential of human-induced pluripotent stem cells: perspectives of induced pluripotent stem cells. Cell Biol Toxicol 33(2):99–112

    Article  CAS  PubMed  Google Scholar 

  4. Paes BCMF, Moço PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ et al (2017) Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol 33(3):233–250. https://doi.org/10.1007/s10565-016-9377-2

    Article  PubMed  Google Scholar 

  5. Ema H, Morita Y, Suda T (2014) Heterogeneity and hierarchy of hematopoietic stem cells. Exp Hematol 42(2):74–82.e2. https://doi.org/10.1016/j.exphem.2013.11.004

    Article  PubMed  CAS  Google Scholar 

  6. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453):236–240. https://doi.org/10.1038/nature12172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375. https://doi.org/10.1038/nature13173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32(10):1053–1058. https://doi.org/10.1038/nbt.2967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18(5):591–596. https://doi.org/10.1016/j.stem.2016.03.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W et al (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161(5):1175–1186. https://doi.org/10.1016/j.cell.2015.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yin Z, Hu JJ, Yang L, Zheng ZF, An CR, Wu BB et al (2016) Single-cell analysis reveals a nestin+ tendon stem/progenitor cell population with strong tenogenic potentiality. Sci Adv 2(11):e1600874. https://doi.org/10.1126/sciadv.1600874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gracz AD, Williamson IA, Roche KC, Johnston MJ, Wang F, Wang Y et al (2015) A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat Cell Biol 17(3):340–349. https://doi.org/10.1038/ncb3104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kim TH, Saadatpour A, Guo G, Saxena M, Cavazza A, Desai N et al (2016) Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5(+) intestinal stem cells. Cell Rep 16(8):2053–2060. https://doi.org/10.1016/j.celrep.2016.07.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E et al (2017) Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ 24(12):2101–2116. https://doi.org/10.1038/cdd.2017.130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C (2012) Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells. Differentiation 83(1):10–16. https://doi.org/10.1016/j.diff.2011.08.008

    Article  PubMed  CAS  Google Scholar 

  16. Yang Z, Li C, Fan Z, Liu H, Zhang X, Cai Z et al (2017) Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder Cancer stem cells. Eur Urol 71(1):8–12. https://doi.org/10.1016/j.eururo.2016.06.025

    Article  PubMed  CAS  Google Scholar 

  17. Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321. https://doi.org/10.1016/j.stem.2014.02.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9(4):357–365. https://doi.org/10.1016/j.stem.2011.08.010

    Article  PubMed  CAS  Google Scholar 

  19. Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250. https://doi.org/10.1038/ncomms5250

    Article  PubMed  CAS  Google Scholar 

  20. Wang X (2016) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361. https://doi.org/10.1007/s10565-016-9350-0

    Article  PubMed  Google Scholar 

  21. Shi L, Zhu B, Xu M, Wang X (2017) Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol 34:109. https://doi.org/10.1007/s10565-017-9405-x

    Article  PubMed  CAS  Google Scholar 

  22. Chen C, Shi L, Li Y, Wang X, Yang S (2016) Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol 32(3):169–184. https://doi.org/10.1007/s10565-016-9322-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gu J, Wang X (2016) New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol 32(1):1–3. https://doi.org/10.1007/s10565-016-9313-5

    Article  PubMed  Google Scholar 

  24. Wang W, Zhu B, Wang X (2017) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427. https://doi.org/10.1007/s10565-017-9400-2

    Article  PubMed  Google Scholar 

  25. Mossoba ME, Flynn TJ, Vohra S, Wiesenfeld PL, Sprando RL (2015) Human kidney proximal tubule cells are vulnerable to the effects of Rauwolfia serpentina. Cell Biol Toxicol 31(6):285–293. https://doi.org/10.1007/s10565-016-9311-7

    Article  PubMed  CAS  Google Scholar 

  26. Zhu Z, Qiu S, Shao K, Hou Y (2017) Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol. https://doi.org/10.1007/s10565-017-9418-5

  27. Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu D (2016) A new method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol 32(4):323–332. https://doi.org/10.1007/s10565-016-9337-x

    Article  PubMed  CAS  Google Scholar 

  28. Xu M, Wang X (2017) Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 33(4):361–371. https://doi.org/10.1007/s10565-017-9393-x

    Article  PubMed  CAS  Google Scholar 

  29. Wang X (2016) CBT profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol 32(4):259–261. https://doi.org/10.1007/s10565-016-9349-6

    Article  PubMed  CAS  Google Scholar 

  30. Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu M, Wang X (2016) Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol 32(5):419–435. https://doi.org/10.1007/s10565-016-9343-z

    Article  PubMed  CAS  Google Scholar 

  31. Lin C, Chen S, Li Y (2017) T cell modulation in immunotherapy for hematological malignancies. Cell Biol Toxicol 33(4):323–327. https://doi.org/10.1007/s10565-017-9397-6

    Article  PubMed  Google Scholar 

  32. Shi L, Dong N, Ji D, Huang X, Ying Z, Wang X, Chen C (2017) Lipopolysaccharide-induced CCN1 production enhances interleukin-6 secretion in bronchial epithelial cells. Cell Biol Toxicol 34:39. https://doi.org/10.1007/s10565-017-9401-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Arumugam P, Samson A, Ki J, Song JM (2017) Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol 33(3):307–321. https://doi.org/10.1007/s10565-016-9378-1

    Article  PubMed  CAS  Google Scholar 

  34. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135. https://doi.org/10.1038/nature15260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Devine H, Patani R (2017) The translational potential of human induced pluripotent stem cells for clinical neurology: the translational potential of hiPSCs in neurology. Cell Biol Toxicol 33(2):129–144. https://doi.org/10.1007/s10565-016-9372-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuge, W., Yan, F., Zhu, Z., Wang, X. (2018). The Significance of Single-Cell Biomedicine in Stem Cells. In: Gu, J., Wang, X. (eds) Single Cell Biomedicine. Advances in Experimental Medicine and Biology, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-13-0502-3_16

Download citation

Publish with us

Policies and ethics