Skip to main content

Thermal Transport Phenomena in Multi-layer Deposition Using Arc Welding Process

  • Chapter
  • First Online:
3D Printing and Additive Manufacturing Technologies

Abstract

The repair of steel plate using welding can be optimized by multi-layer deposition. In this numerical study, semi-automatic arc welding is used to deposit single-track multi-layers of mild steel on a same material mild steel plate. Three-dimensional transient numerical simulations of the transport phenomena involved in the melt pool are performed. The model considers heat transfer, convective and radiative losses, phase change, re-melting, solidification, and buoyancy and Marangoni convection driven fluid flow in the melt pool. The model predicts the temperature and velocity fields, and the evolution of melt pool shape and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C p :

Specific heat of work piece (J kg−1 K−1)

f l :

Volume fraction of liquid phase

g :

Acceleration due to gravity (m s−2)

h :

Convective heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity of the work piece (W m−1 K−1)

p :

Pressure (N m−2)

q :

Heat input (W m−2)

T :

Temperature (°C)

T :

Ambient temperature (°C)

t :

Time (s)

V :

Welding speed (m s−1)

\( \overrightarrow{u} \) :

Continuum velocity vector (m s−1)

α m :

Mass fraction

β T :

Coefficient of thermal expansion (K−1)

γ :

Surface tension (N m−1)

ε :

Emissivity of the work piece

σ :

Stefan-Boltzmann constant (W m K−4)

µ :

Dynamic viscosity (N s m−2)

ρ :

Density of the work piece (kg m−3)

:

Ambient

l:

Liquid state

s:

Solid state

References

  1. M. Chiumenti, M. Cervera, A. Salmi, C.A. Saracibar, N. Dialami, K. Matsui, Finite element modeling of multi-pass welding and shaped metal deposition processes. Comput. Methods Appl. Mech. Eng. 199, 2343–2359 (2010)

    Article  Google Scholar 

  2. L. Lan, X. Kong, C. Qiu, D. Zhao, Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints. Mater. Des. 90, 488–498 (2016)

    Article  Google Scholar 

  3. C. Heinze, C. Schwenk, M. Rethmeier, Numerical calculation of residual stress development of multi-pass gas metal arc welding under high restraint conditions. Mater. Des. 35, 201–209 (2011)

    Article  Google Scholar 

  4. W.C. Jiang, B.Y. Wang, J.M. Gong, S.T. Tu, Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate. Mater. Des. 32, 2851–2857 (2010)

    Article  Google Scholar 

  5. D.W. Cho, W.H. Song, M.H. Cho, S.J. Na, Analysis of submerged arc welding process by three-dimensional computational fluid dynamics simulations. J. Mater. Process. Technol. 213, 2278–2291 (2013)

    Article  Google Scholar 

  6. G. Duggan, M. Tong, D.J. Browne, Modelling the creation and destruction of columnar and equiaxed zones during solidification and melting in multi-pass welding of steel. Comput. Mater. Sci., 285–294 (2014)

    Article  Google Scholar 

  7. Y. Lee, D.F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing. J. Laser Appl. 28, 012006s (2015)

    Article  Google Scholar 

  8. S. Mishra, S. Chakraborty, T. DebRoy, Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys. J. Appl. Phys. 97, 094912s (2005)

    Article  Google Scholar 

  9. A. Traidia, F. Roger, E. Guyot, J. Schroeder, G. Lubineau, Hybrid 2D–3D modelling of GTA welding with filler wire addition. Int. J. Heat Mass Transf. 55, 3946–3963 (2012)

    Article  Google Scholar 

  10. Z. Boumerzoug, C. Derfouf, T. Baudin, Effect of welding on microstructure and mechanical properties of an industrial low carbon steel. Engineering 2(7), 502–506 (2010)

    Article  Google Scholar 

  11. M.R. Nami, M.H. Kadivar, K. Jafarpur, Three-dimensional thermal response of thick plate weldments: effect of layer-wise and piece-wise welding. Modell. Simul. Mater. Sci. Eng. 12(4), 731–743 (2004)

    Article  Google Scholar 

  12. H. Zhao, G. Zhang, Z. Yin, L. Wu, A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J. Mater. Process. Technol. 211(3), 488–495 (2010)

    Article  Google Scholar 

  13. I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tools Manuf. 49, 916–923 (2009)

    Article  Google Scholar 

  14. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput. Mater. Sci. 50, 3315–3322 (2011)

    Article  Google Scholar 

  15. A. Ghosh, A. Yadav, A. Kumar, Modelling and experimental validation of moving tilted volumetric heat source in gas metal arc welding process. J. Mater. Process. Technol. 239, 52–65 (2017)

    Article  Google Scholar 

  16. A. Yadav, A. Ghosh, A. Kumar, Experimental and numerical study of thermal field and weld bead characteristics in submerged arc welded plate. J. Mater. Process. Technol. 248, 262–274 (2017)

    Article  Google Scholar 

  17. N. Pathak, A. Kumar, A. Yadav, P. Dutta, Effects of mould filling on evolution of the solid–liquid interface during solidification. Appl. Therm. Eng. 29(17), 3669–3678 (2009)

    Article  Google Scholar 

  18. A. Bahrami, D.K. Aidun, D.T. Valentine, Interaction of gravity forces in spot GTA weld pool. Weld. J. 93, 139–144 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A., Ghosh, A., Kumar, A. (2019). Thermal Transport Phenomena in Multi-layer Deposition Using Arc Welding Process. In: Kumar, L., Pandey, P., Wimpenny, D. (eds) 3D Printing and Additive Manufacturing Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0305-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0305-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0304-3

  • Online ISBN: 978-981-13-0305-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics