Skip to main content

Photo-Crosslinkable Hydrogels for Tissue Engineering Applications

  • Chapter
  • First Online:
Photochemistry for Biomedical Applications

Abstract

Hydrogels have great potential for tissue engineering applications because of their versatile functionalities: similarity to the extracellular microenvironments, injectability allowing delivery in a minimally invasive manner to fill defects of any size and shape, tunability of chemical composition, and easy modification with biochemical factors. Cells can be loaded during the preparation of hydrogels, resulting in even cell distribution in the hydrogels. A variety of photo-crosslinkable hydrogels and their composites have been developed for tissue engineering of different tissues including cartilage, bone, and muscle. The chapter summarizes these photo-crosslinkable hydrogels, their synthesis, characteristics, and application for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Vlierberghe, S., Dubruel, P., Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12, 1387–1408 (2011)

    Article  CAS  Google Scholar 

  2. Nguyen, K.T., West, J.L.: Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Bryant, S.J., Nuttelman, C.R., Anseth, K.S.: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Bartnikowski, M., Bartnikowski, N.J., Woodruff, M.A., Schrobback, K., Klein, T.J.: Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater. 27, 66–76 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Skardal, A., et al.: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16, 2675–2685 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burdick, J.A., Chung, C., Jia, X., Randolph, M.A., Langer, R.: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromol 6, 386–391 (2005)

    Article  CAS  Google Scholar 

  7. Li, Q., et al.: Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res A 68, 28–33 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Leipzig, N.D., Wylie, R.G., Kim, H., Shoichet, M.S.: Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32, 57–64 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Smeds, K.A., et al.: Photocrosslinkable polysaccharides for in situ hydrogel formation. J. Biomed. Mater. Res. 54, 115–121 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Jeon, O., Bouhadir, K.H., Mansour, J.M., Alsberg, E.: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30, 2724–2734 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y., Chan-Park, M.B.: A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31, 1158–1170 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Chan-Park, M.B.: Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30, 196–207 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Coutinho, D.F., et al.: Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials 31, 7494–7502 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, J.Y., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Darnell, M.C., et al.: Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34, 8042–8048 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L’Heureux, N., Germain, L., Labbe, R., Auger, F.A.: In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17, 499–509 (1993)

    Article  PubMed  Google Scholar 

  17. Munoz-Pinto, D.J., Jimenez-Vergara, A.C., Gharat, T.P., Hahn, M.S.: Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials 40, 32–42 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Brigham, M.D., et al.: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng. Part A 15, 1645–1653 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Li, X., Chen, Y., Kawazoe, N., Chen, G.: Influence of microporous gelatin hydrogels on chondrocyte functions. J. Mater. Chem. B 5, 5753–5762 (2017)

    Article  CAS  Google Scholar 

  20. Khademhosseini, A., et al.: A soft lithographic approach to fabricate patterned microfluidic channels. Anal. Chem. 76, 3675–3681 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Annabi, N., et al.: Controlling the porosity and micro architecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16, 371–383 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bryant, S.J., Cuy, J.L., Hauch, K.D., Ratner, B.D.: Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 28, 2978–2986 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S., Seliktar, D.: Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743–4752 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, S., Leong, K.F., Du, Z., Chua, C.K.: The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8, 1–11 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Bryant, S.J., Anseth, K.S.: The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22, 619–626 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Erickson, I.E., et al.: Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A 15, 1041–1052 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Chung, C., Beecham, M., Mauck, R.L., Burdick, J.A.: The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials 30, 4287–4296 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knudson, C.B., Knudson, W.: Hyaluronan and CD44: modulators of chondrocyte metabolism. Clin. Orthop. Relat. Res. S152–S162 (2004)

    Article  Google Scholar 

  29. Li, X., et al.: 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers 8, 269 (2016)

    Article  CAS  Google Scholar 

  30. Poldervaart, M.T., et al.: 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE 12, e0177628 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bae, M.S., et al.: Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59, 189–198 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Lewandowska-Lancucka, J., et al.: Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering. Carbohydr. Polym. 157, 1714–1722 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Feng, Q., et al.: Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 101, 217–228 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Arakawa, C., et al.: Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng. Regen. Med. 11, 164–174 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Engler, A.J., et al.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costantini, M., et al.: Engineering muscle networks in 3D gelatin methacryloyl hydrogels: influence of mechanical stiffness and geometrical confinement. Front Bioeng. Biotechnol. 5, 22 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rossi, C.A., et al.: In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. Faseb j 25, 2296–2304 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Moller, L., et al.: Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering. Int. J. Artif. Organs 34, 93–102 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. Li, H., Koenig, A.M., Sloan, P., Leipzig, N.D.: In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35, 9049–9057 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, G., Kawazoe, N., Ito, Y. (2018). Photo-Crosslinkable Hydrogels for Tissue Engineering Applications. In: Ito, Y. (eds) Photochemistry for Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-0152-0_10

Download citation

Publish with us

Policies and ethics