Skip to main content

Role of Rhizobacteria in Phytoremediation of Metal-Impacted Sites

  • Chapter
  • First Online:

Abstract

Phytoremediation is an emerging and eco-friendly technology that has gained wide acceptance and is currently an area of active research in plant biology. A number of metal-hyperaccumulating plants have already been identified as potential candidates to phytoremediate metal-polluted soil. Various strategies have been successfully applied to generate plants able to grow in adverse environmental conditions and accumulate or transfer a number of metals. Recently, biotechnological approaches have opened up new opportunities concerning the application of beneficial rhizospheric and endophytic bacteria for improving plant growth, biological control, and heavy metal remediation from contaminated sites. Further, molecular approaches have been applied to improve the process of phytoremediation efficiently using a transgenic approach. The overexpression of several genes whose protein products are directly or indirectly involved in plant metal uptake, transport, and sequestration, or act as enzymes involved in the biodegradation of hazardous organic wastes, has opened up new possibilities in phytoremediation. This chapter is mainly focused on plant-microbe interactions to phytoremediate metal-contaminated sites and evaluate the progress made thus far in understanding the role of rhizospheric and endophytic bacteria in the phytoremediation of metal-contaminated sites and different phytoremediation technologies. In addition, we also discuss the use of genetic engineering to modify plants for enhanced efficacy phytoremediation strategies. These approaches will be helpful to develop phytoremediation technologies for large-scale application to remediate vast areas of metal-polluted sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Rahman RA, Abou-Shanab RA, Moawad H (2008) Mercury detoxification using genetic engineered Nicotiana tabacum. Global NEST J 10:432–438

    Google Scholar 

  • Abou-Shanab RAI (2003) Ecological and molecular studies on the role of rhizosphere microflora on phytoremediation efficiency. Ph.D. thesis, Faculty of Science, Alexandria University, Egypt C/O Maryland University, College Park USA

    Google Scholar 

  • Abou-Shanab RAI (2010) Bioremediation: new approaches and trends. In: Khan MS et al (eds) Biomanagement of metal-contaminated soils, environmental pollution. Springer Publications, New York, pp 65–94

    Google Scholar 

  • Abou-Shanab RI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003a) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H (2003b) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, van Berkum P (2007a) Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.) Int J Phytoremediation 9:91–105

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007b) Heavy metal resistant patterns and further genotypic characterization of metal resistant gene (S) in gram positive and gram negative bacteria isolated from Ni-rich serpentine soil and the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Ghanem KM, Ghanem NB, Al-Kolaibe AM (2008) The role of bacteria on heavy-metals extraction and uptake by plants growing on multi-metal contaminated soils. World J Microbiol Biotechnol 24:253–262

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Ghozlan HA, Ghanem K, Moawad H (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 26:101–108

    Article  CAS  Google Scholar 

  • Agarwal S, Shende ST (1987) Tetrazolium reducing microorganisms inside the root of Brassica species. Curr Sci India 56:187–188

    CAS  Google Scholar 

  • Altalhi AD (2009) Plasmids profiles, antibiotic and heavy metal resistance incidence of endophytic bacteria isolated from grapevine (Vitis vinifera L.) Afr J Biotechnol 8:5873–5882

    Article  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm HA (1999) A tobacco plasma membrane calmodulin binding transporter confers Ni+ tolerance and Pb+ hyper-sensitivity in transgenic plants. Plant J 20:171–182

    Article  CAS  Google Scholar 

  • Arruti A, Fernandez-Olmo I, Irabien A (2010) Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit 12:1451–1458

    Article  CAS  Google Scholar 

  • Baba A, Gurdal G, Sengunalp F, Ozay O (2008) Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: can thermal power plant, province of Canakkale, Turkey. Environ Monit Assess 139:287–298

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    Article  CAS  Google Scholar 

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    Article  CAS  Google Scholar 

  • Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Article  CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. CRC Press, Boca Raton, pp 155–178

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Article  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  CAS  Google Scholar 

  • Basha NS, Ogbaghebriel A, Yemane K, Zenebe M (2012) Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity. Int J Green Pharm 6:40–44

    Article  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2008) Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grow in post methanated distillery effluent (PMDE) irrigated soil. Bioresour Technol 99(17):8316–8324

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology, its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22

    Chapter  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    Article  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 1:359–362

    Article  Google Scholar 

  • Brown KB, Hyde KD, Guest DI (1999) Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia. Fungal Divers 1:27–51

    Google Scholar 

  • Bruschi M, Goulhen F (2006) New bioremediation technologies to remove heavy metals and radionuclides using Fe(III)-sulfate- and sulfur reducing bacteria. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer Publication, New York, pp 35–55

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Cao L, Qui Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic Streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol 247:147–152

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit JH (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  Google Scholar 

  • Chaney R, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Mcintosh, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Co. Z Naturforsch 60C:190–198

    Google Scholar 

  • Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC Press, Boca Raton

    Google Scholar 

  • Chen WM, Tang YQ, Mori K, Wu XL (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15:99–110

    Article  Google Scholar 

  • Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Article  Google Scholar 

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198

    Article  CAS  Google Scholar 

  • Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. Article ID 752708, 12 pages

    Article  CAS  Google Scholar 

  • Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017a) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. Green technologies and environmental sustainability. Springer International, Cham, pp 409–435

    Chapter  Google Scholar 

  • Chowdhary P, More N, Raj A, Bharagava RN (2017b) Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int 5:30–36

    Article  Google Scholar 

  • Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental. Chemosphere 194:229–246

    Article  CAS  Google Scholar 

  • Chui S, Wong YH, Chio HI, Fong MY, Chiu YM et al (2013) Study of heavy metal poisoning in frequent users of Chinese medicines in Hong Kong and Macau. Phototherapy Res 27:859–863

    Article  CAS  Google Scholar 

  • Claudia S, Cesar V, Rosanna G (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413

    Article  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley D, Anderson TA (1997) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DC

    Google Scholar 

  • Dahl J, Obernberger I, Brummer T, Biedermann F (2002) Results and evaluation of a new heavy metal fractionation technology in grate-fired biomass combustion plants as a basis for an improved ash utilization. In: Proceedings of the 12st European conference on biomass for energy, industry and climate protection, Amsterdam, The Netherlands, pp 690–694

    Google Scholar 

  • Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein ferritin, are tolerant to oxidative damages and pathogens. Nat Biotechnol 17:192–196

    Article  CAS  Google Scholar 

  • De-Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance that accumulation of selenium and mercury in wetland plants. Planata 209:259–263

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Diels L, van der Lelie N, Bastiaens L (2002) New development in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    Article  CAS  Google Scholar 

  • Divya B, Deepak Kumar M (2011) Plant-microbe interaction with enhanced bioremediation. Res J BioTechnol 6:72–79

    CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metal- a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Eapen S, Suseelan K, Tivarekar S, Kotwal S, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 5:1424–1430

    Article  Google Scholar 

  • Eckhardt U, Marques AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    Article  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B (2004) Production of S methyl selenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 28:4

    Google Scholar 

  • Erikson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Article  CAS  Google Scholar 

  • Evangelou MWH, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer International Publishing, Cham

    Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications of Ps MTA function. Plant Mol Biol 20:1019–1028

    Article  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  CAS  Google Scholar 

  • Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MM (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol Ecol 15:3045–3059

    Article  CAS  Google Scholar 

  • Gangwar M, Kaur G (2009) Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Int J Microbiol 7:139–144

    Google Scholar 

  • Gao XL, Zhou FX, Chen CTA (2014) Pollution status of the Bohai Sea, China: an overview of the environmental quality assessment related trace metals. Environ Int 62:12–30

    Article  CAS  Google Scholar 

  • Ghaderian MYS, Anthony JEL, Baker AJM (2000) Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. New Phytol 146:219–224

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Gilis A (1993) Interactie tussen verschillende potentieel toxische metalen (Zn, Cd, Ni en Al) en siderofoor-afhankelijke ijzer-opname in verschillende fluorescerende Pseudomonas stammen. Licentiaatsthesis, Departement Algemene Biologie, Brussels

    Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  Google Scholar 

  • Glick RB (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Grandjean P (2007) Methylmercury toxicity and functional programming. Reprod Toxicol 23:414–420

    Article  CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Kaufmann K, Sigler W, Harms H (2004) Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 48:273–283

    Article  CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    Article  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  Google Scholar 

  • Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl Environ Microbiol 67:1710–1717

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanism of heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hamayun M, Sumera AK, Iqbal I, Ahmad B, Lee I (2010) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20:202–207

    CAS  Google Scholar 

  • Hamelink JL, Landrum PF, Harold BL, William BH (1994) Bioavailability: physical, chemical, and biological interactions. CRC Press, Boca Raton

    Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    Article  CAS  Google Scholar 

  • Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Plant Physiol 158:655–661

    Article  CAS  Google Scholar 

  • Hare V, Chowdhary P, Baghel VS (2017) Influence of bacterial strains on Oryza sativa grown under arsenic tainted soil: accumulation and detoxification response. Plant Physiol Biochem 119:93–102

    Article  CAS  Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUPI). Plant Soil 196:277–281

    Article  CAS  Google Scholar 

  • Hawkes SJ (1997) What is a heavy metal? J Chem Educ 74:1374

    Article  CAS  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  Google Scholar 

  • Hill MS (1997) Understanding environmental pollution. Cambridge University Press, Cambridge, 316 pp

    Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  CAS  Google Scholar 

  • Huyer M, Page W (1988) Zn2+ increases siderophore production in Azotobacter vinelandii. Appl Environ Microbiol 54:2625–2631

    CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  • Ivano B, Jorg L, Madeleine S, Gunthardt G, Beat F (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soil and plants.4th edn. Taylor & Francis: CRC Press, Boca Raton

    Google Scholar 

  • Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int J Environ Res Public Health 13:663

    Article  CAS  Google Scholar 

  • Kelemu S, Fory P, Zuleta C, Ricaurte J, Rao I, Lascano C (2011) Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determining their role in improving plant growth. Afr J Biotechnol 10:965–976

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan K, Lu Y, Khan H (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–236

    Google Scholar 

  • Kramer U, Clemens S (2005) Molecular biology of metal homeostasis and detoxification. In: Tamás MJ, Martinoia E (eds) Topics in current genetics. Springer, Berlin, pp 216–271

    Google Scholar 

  • Krid S, Rhouma A, Mogou I, Quesada JM, Nesme X, Gargouri A (2010) Pseudomonas savastanoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas fluorescens and Bacillus subtilis. J Plant Pathol 92:335–341

    Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 32:2090–2102

    Article  Google Scholar 

  • Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211

    Article  CAS  Google Scholar 

  • Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I (2003) Functional expression of heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    Article  CAS  Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    Article  CAS  Google Scholar 

  • Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236:1849–1861

    Article  CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang JZ, Yang FX (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie van Leeuwen hoek 103:299–312

    Article  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bauelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–221

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 3:691–698

    Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C 34(1):1–34

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L and Nicotiana tabacum L plants. Theor Appl Genet 78:16–18

    Article  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    Article  CAS  Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 203:139–149

    CAS  Google Scholar 

  • National Research Council (NRC) (1999) Arsenic in drinking water. National Research Council, Washington, DC, pp 251–257

    Google Scholar 

  • Newman L, Reynolds C (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMES Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copper belt province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-1-gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  CAS  Google Scholar 

  • Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12

    Article  CAS  Google Scholar 

  • Park JD (2010) Heavy metal poisoning. Hanyang Med Rev 30:319–325

    Article  CAS  Google Scholar 

  • Pedas P, Schjoerring JK, Husted S (2009) Identification and characterization of zinc-starvation induced ZIP transporters from barley roots. Plant Physiol Biochem 47:377–383

    Article  Google Scholar 

  • Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Microbiol 56:1263–1271

    Article  CAS  Google Scholar 

  • Pereira JO, Carneiro-Vieira ML, Azevedo JL (1999) Endophytic fungi from Musa acuminata and their reintroduction into axenic plants. World J Microbiol Biotechnol 15:37–40

    Article  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: Cd permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees–a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJH (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reinhold-Hurek B, Hurek R (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:39–144

    Google Scholar 

  • Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, van der Lelie D (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370

    Article  Google Scholar 

  • Rugh CL, Wilde D, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  CAS  Google Scholar 

  • Ryan PB, Huet N, Macintoshl DL (2000) Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environ Health Perspect 108:731–735

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  Google Scholar 

  • Rylo Sona Janarthine S, Eganathan P, Balasubramanian T, Vijayalakshmi S (2011) Endophytic bacteria isolated from the pneumatophores of Avicennia marina. Afr J Microbiol Res 5:4455–4466

    Article  CAS  Google Scholar 

  • Sadowsky MJ (1999) In phytoremediation: past promises and future practices. Proceedings of the 8th international symposium on microbial ecology. Halifax, Canada, pp 1–7

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation process. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: BJE S, CJC B, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Scortichini M, Loreti S (2007) Occurrence of an endophytic, potentially pathogenic strain of Pseudomonas syringae in symptomless wild trees of Corylus avellana l. J Plant Pathol 89:431–434

    CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  CAS  Google Scholar 

  • Shaul O, Hilgemann DW, de Almedia-Engler J, Van Montagu M, Inze D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199–200:314–320

    Article  CAS  Google Scholar 

  • Siddiqui RA, Benthin K, Schlegel HG (1989) Cloning of pMOL28- encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171:5071–5078

    Article  CAS  Google Scholar 

  • Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  Google Scholar 

  • Taghavi S, Mergeay M, van der Lelie D (1997) Genetics and physical map of the Alcaligenes eutrophus CH34 mega plasmid pMOL28 and it derivative pMOL50 obtained after temperature induced mutagenesis and mortality. Plasmid 37:22–34

    Article  CAS  Google Scholar 

  • Talk I, Hanikenne M, Kramer U (2006) Zinc dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. Article ID 939161

    Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszi C, Williams CR, Abbas M (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    Article  CAS  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G, Carniato F, Roc-cotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56

    Article  CAS  Google Scholar 

  • Turgut C (2003) The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey, 2000–2002. Environ Int 29:29–32

    Article  CAS  Google Scholar 

  • United Nations Environmental Programme (UNEP) (2002) Global mercury assessment. United Nations, Geneva

    Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  CAS  Google Scholar 

  • Van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaa E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    Article  CAS  Google Scholar 

  • Van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 265–281

    Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnen AN, Schat H, Verkleij JAC (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EA (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard over expressing ATP sulfurylase or cystathionine gamma synthase. Int J Phytoremediation 6:111–118

    Article  CAS  Google Scholar 

  • Vera Tomé F, Blanco Rodrguezb P, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:51–357

    Article  CAS  Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

    Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129

    Article  CAS  Google Scholar 

  • Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9

    Article  CAS  Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  Google Scholar 

  • Welch RM, Norvell WA (1999) Mechanisms of Cd uptake, translocation and deposition in plants. In: McLaughlin MJ, Singh BR (eds) Cd in soils and plants. Kluwer Academic Publisher’s, Dordretch, pp 125–150

    Chapter  Google Scholar 

  • Whiting SN, De Souza M, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulator by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  Google Scholar 

  • Wuana A, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. Article ID: 402647

    Article  Google Scholar 

  • Wuertz S, Mergeay M (1997) The impact of heavy metals on soil microbial communities and their activities. In: van Elsas JD, Wellington EMH, Trevors JT (eds) Modern soil microbiology. Marcel Decker, New York, pp 1–20

    Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in the environment, their threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interaction and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, pp 128–141

    Chapter  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

  • Zhang YF, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011a) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725

    Article  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011b) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  Google Scholar 

  • Zhang XY, Chen DM, Zhong TY, Zhang XM, Cheng M, Li XH (2015) Assessment of cadmium (Cd) concentration in arable soil in China. Environ Sci Pollut Res 22:4932–4941

    Article  CAS  Google Scholar 

  • Zhu Y, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224

    Article  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing g-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda A. I. Abou-Shanab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abou-Shanab, R.A.I., El-Sheekh, M.M., Sadowsky, M.J. (2019). Role of Rhizobacteria in Phytoremediation of Metal-Impacted Sites. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_14

Download citation

Publish with us

Policies and ethics