Skip to main content

A Low Power, Frequency-to-Digital Converter CMOS Based Temperature Sensor in 65 nm Process

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2017)

Abstract

A low power all CMOS based smart temperature sensor is introduced without using any bandgap reference or any current/voltage analog-to-digital converter. With the intention of low cost, power and area consumption, the proposed temperature sensor operates in sub-threshold region generating a temperature dependent frequency from the proportional to absolute temperature current. A digital output is obtained from the temperature dependent frequency by using a 12-bit asynchronous counter. A temperature insensitive ring oscillator is designed used a reference clock signal in counter. The temperature sensor is implemented using 65 nm CMOS standard process and its operation is validated through post-layout simulation results, at a power supply of (0.5–1)-V. The sensor has an uncalibrated accuracy of +2.4/–2.1 °C for (–55 to 125) °C and a resolution of 0.28 °C for the same range. The power and area consumed by the sensor is 1.55 µW and 0.024 mm2 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakker, A.: CMOS smart temperature sensors— an overview. In: 2002 Proceedings of the IEEE Sensors, vol. 2, pp. 1423–1427. IEEE (2002)

    Google Scholar 

  2. Pertijs, M.A.P., Huijsing, J.H.: Precision Temperature Sensors in CMOS Technology, 1st edn. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-5258-8

    Google Scholar 

  3. Souri, K., Chae, Y., Makinwa, K.A.A.: A CMOS temperature sensor with a voltage- calibrated inaccuracy of ±0.15 °C (3σ) from −55 °C to 125 °C. IEEE J. Solid-State Circuits 48(1), 292–301 (2013)

    Article  Google Scholar 

  4. Aita, L., Pertijs, M.A.P., Makinwa, K.A.A., Huijsing, J.H., Meijer, G.C.M.: Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (± 3σ) from −70 °C to 130 °C. IEEE Sens. J. 13(5), 1840–1848 (2013)

    Article  Google Scholar 

  5. Sebastiano, F., Breems, L.J., Makinwa, K.A.A., Drago, S., Leenaerts, D.M.W., Nauta, B.: A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from −70 °C to 125 °C. IEEE J. Solid-State Circuits 45(12), 2591–2601 (2010)

    Article  Google Scholar 

  6. Souri, K., Makinwa, K.A.A.: A 0.12 mm2 7.4 μW micropower temperature sensor with an inaccuracy of ±0.2 ℃ (3σ) from −30 ℃ to +125 ℃. IEEE J. Solid-State Circuits 46(7), 1693–1700 (2011)

    Article  Google Scholar 

  7. Hwang, S., Koo, J., Kim, K., Lee, H., Kim, C.: A 0.008 mm2 500 μW 469 kS/s frequency- to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Trans. Circuits Syst. I, Reg. Papers 60(9), 2241–2248 (2013)

    Article  Google Scholar 

  8. Chen, P., Chen, S.C., Shen, Y.S., Peng, Y.J.: All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of −0.7 °C/+ 0.6 °C after one-point calibration. IEEE Trans. Circuits Syst. I, Reg. Papers 58(5), 913–920 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bashir, M., Sreehari Roa, P., KrishnaPrasad, K.S.R.: On-chip CMOS temperature sensor with current calibrated accuracy of −1.1 °C to +1.4 (3σ) from −20 °C to 150 °C. In: 19th International Symposium on VLSI Design and Test, pp. 1–5. IEEE, Ahmedabad (2015)

    Google Scholar 

  10. Bashir, M., Sreehari Roa, P., KrishnaPrasad, K.S.R.: An ultra-low power, 0.003mm2 area, voltage to frequency based smart temperature sensor for −55 °C to +125 °C with one-point calibration. Turkish. J. Electr. Eng. Comput. Sci. 25(4), 2995–3007 (2017)

    Article  Google Scholar 

  11. Chen, C.C., Liu, W.J., Lin, S.H., Lin, C.C.: A CMOS oscillators-based smart temperature sensor for low-power low-cost systems. Procedia Eng. 47, 92–95 (2012). Elsevier

    Article  Google Scholar 

  12. Chen, S.W., Chang, M.H., Hsieh W.C., Hwang, W.: Fully on-chip temperature, process, and voltage sensors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 897–900. IEEE, Paris (2010)

    Google Scholar 

  13. Mohamad, S., Tang, F., Amira, A., Bermak, A., Benammar, M.: A low power oscillator based temperature sensor for RFID applications. In: Proceedings of Fifth Asia Symposium on Quality Electronic Design, ASQED 2013, pp. 50–54. IEEE, Penang (2013)

    Google Scholar 

  14. Nebhen, J., Meillère, S., Masmoudi, M., Seguin, J.L., Barthelemy H., Aguir, K.: A temperature compensated CMOS ring oscillator for wireless sensing applications. In: Proceedings of 10th IEEE International NEWCAS Conference, pp. 37–40. IEEE, Montreal (2012)

    Google Scholar 

  15. Chen, C.C., Chen, H.W.: A low-cost CMOS smart temperature sensor using a thermal-sensing and pulse-shrinking delay line. IEEE Sens. J. 14(1), 278–284 (2014)

    Article  Google Scholar 

  16. Kim, K., Lee, H., Kim, C.: 366-Ks/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(12), 1–5 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ho, Y., Yang, Y.S., Su, C.: A 0.2–0.6 V ring oscillator design using bootstrap technique. In: Proceedings of Asian Solid-State Circuits Conference (ASSCC) on Digital Technology Papers, pp. 333–336. IEEE, Jeju (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudasir Bashir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bashir, M., Patri, S., Krishna Prasad, K.S.R. (2017). A Low Power, Frequency-to-Digital Converter CMOS Based Temperature Sensor in 65 nm Process. In: Kaushik, B., Dasgupta, S., Singh, V. (eds) VLSI Design and Test. VDAT 2017. Communications in Computer and Information Science, vol 711. Springer, Singapore. https://doi.org/10.1007/978-981-10-7470-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7470-7_62

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7469-1

  • Online ISBN: 978-981-10-7470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics