Skip to main content

Combustion of Multi-component Fuel Droplets

  • Chapter
  • First Online:
Droplets and Sprays

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618

    Article  Google Scholar 

  • Anisimov SI, Dunikov DO, Zhakhovskii VV, Malyshenko SP (1999) Properties of a liquid–gas interface at high-rate evaporation. J Chem Phys 110(17):8722–8729

    Article  Google Scholar 

  • Antaki P, Williams FA (1987) Observations on the combustion of boron slurry droplets in air. Combust Flame 67(1):1–8

    Article  Google Scholar 

  • Avedisian CT, Fatehi M (1988) An experimental study of the Leidenfrost evaporation characteristics of emulsified liquid droplets. Int J Heat Mass Transf 31(8):1587–1603

    Article  Google Scholar 

  • Ayyaswamy PS, Sadhal SS, Huang LJ (1990) Effect of internal circulation on the transport to a moving drop. Int Commun Heat Mass Transf 17(6):689–702

    Article  Google Scholar 

  • Basu S, Miglani A (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Int J Heat Mass Transf 96:482–503

    Article  Google Scholar 

  • Bhattacharya P, Ghosal S, Som SK (1996) Evaporation of multicomponent liquid fuel droplets. Int J Energy Res 20(5):385–398

    Article  Google Scholar 

  • Biswal LD, Datta A, Som SK (1999) Transport coefficients and life history of a vaporising liquid fuel droplet subject to retardation in a convective ambience. Int J Heat Fluid Flow 20(1):68–73

    Article  Google Scholar 

  • Blander M, Katz JL (1975) Bubble nucleation in liquids. AIChE J 21(5):833–848

    Article  Google Scholar 

  • Bond M, Struchtrup H (2004) Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys Rev E Stat Nonlinear Soft Matter Phys 70(6):1–21

    Google Scholar 

  • Byun DY, Baek SW, Cho JH (1999) Microexplosion of aluminum slurry droplets. Int J Heat Mass Transf 42(24):4475–4486

    Article  MATH  Google Scholar 

  • Chen C-K, Lin T-H (2011) Burning of water-in-dodecane compound drops. Atomization Sprays 21(10):867–881

    Article  Google Scholar 

  • Chiang CH, Raju MS, Sirignano WA (1992) Numerical analysis of convecting, vaporizing fuel droplet with variable properties. Int J Heat Mass Transf 35(5):1307–1324

    Article  MATH  Google Scholar 

  • Chigier NA (1976) The atomization and burning of liquid fuel sprays. Prog Energy Combust Sci 2(2):97–114

    Article  Google Scholar 

  • Chigier NA (1977) Instrumentation techniques for studying heterogeneous combustion. Prog Energy Combust Sci 3(3):175–189

    Article  Google Scholar 

  • Chigier N (1983) Group combustion models and laser diagnostic methods in sprays: a review. Combust Flame 51:127–139

    Article  Google Scholar 

  • Chung SH, Kim JS (1990) An experiment on vaporization and microexplosion of emulsion fuel droplets on a hot surface. Symp (Int) Combust 23(1):1431–1435

    Article  Google Scholar 

  • Consolini L, Aggarwal SK, Murad S (2003) A molecular dynamics simulation of droplet evaporation. Int J Heat Mass Transf 46(17):3179–3188

    Article  MATH  Google Scholar 

  • Curtis EW, Farrell PV (1992) A numerical study of high-pressure droplet vaporization. Combust Flame 90(2):85–102

    Article  Google Scholar 

  • Dash SK, Som SK (1991a) Ignition and combustion of liquid fuel droplet in a convective medium. J Energy Res Technol 113(3):167–170

    Article  Google Scholar 

  • Dash SK, Som SK (1991b) Transport processes and associated irreversibilities in droplet combustion in a convective medium. Int J Energy Res 15(7):603–619

    Article  Google Scholar 

  • Dash SK, Sengupta SP, Som SK (1991) Transport processes and associated irreversibilities in droplet evaporation. J Thermophys Heat Transf 5(3):366–373

    Article  Google Scholar 

  • Dietrich DL, Haggard JB, Dryer FL, Nayagam V, Shaw BD, Williams FA (1996) Droplet combustion experiments in spacelab. Symp (Int) Combust 26(1):1201–1207

    Article  Google Scholar 

  • Dwyer HA (1988) Calculations of unsteady reacting droplet flows. Symp (Int) Combust 22(1):1923–1929

    Article  Google Scholar 

  • Dwyer HA (1989) Calculations of droplet dynamics in high temperature environments. Prog Energy Combust Sci 15(2):131–158

    Article  Google Scholar 

  • Dwyer HA, Sanders BR (1988) A detailed study of burning fuel droplets. Symp (Int) Combust 21(1):633–639

    Article  Google Scholar 

  • Eberhart JG, Kremsner W, Blander M (1975) Metastability limits of superheated liquids: bubble nucleation temperatures of hydrocarbons and their mixtures. J Colloid Interface Sci 50(2):369–378

    Article  Google Scholar 

  • Faeth GM (1977) Current status of droplet and liquid combustion. Prog Energy Combust Sci 3(4):191–224

    Article  Google Scholar 

  • Faeth GM (1983) Evaporation and combustion of sprays. Prog Energy Combust Sci 9(1–2):1–76

    Article  Google Scholar 

  • Faeth GM (1987) Mixing, transport and combustion in sprays. Prog Energy Combust Sci 13(4):293–345

    Article  Google Scholar 

  • Gan Y, Qiao L (2011) Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust Flame 158(2):354–368

    Article  Google Scholar 

  • Gan Y, Qiao L (2012) Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles. Int J Heat Mass Transf 55(21–22):5777–5782

    Article  Google Scholar 

  • Gan Y, Lim YS, Qiao L (2012) Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust Flame 159(4):1732–1740

    Article  Google Scholar 

  • Gavhane S, Pati S, Som SK (2016) Evaporation of multicomponent liquid fuel droplets: influences of component composition in droplet and vapor concentration in free stream ambience. Int J Therm Sci 105:83–95

    Article  Google Scholar 

  • Gerum E, Straub J, Grigull U (1979) Superheating in nucleate boiling calculated by the heterogeneous nucleation theory. Int J Heat Mass Transf 22(4):517–524

    Article  Google Scholar 

  • Godsave GAE (1953) Studies of the combustion of drops in a fuel spray–the burning of single drops of fuel. Symp (Int) Combust 4(1):818–830

    Article  Google Scholar 

  • Gogos G, Sadhal SS, Ayyaswamy PS, Sundararajan T (1986) Thin-flame theory for the combustion of a moving liquid drop: effects due to variable density. J Fluid Mech 171:121–144

    Article  MATH  Google Scholar 

  • Goldsmith M, Penner SS (1954) On the burning of single drops of fuel in an oxidizing atmosphere. J Jet Propul 24(4):245–251

    Article  Google Scholar 

  • Harper JF, Moore DW (1968) The motion of a spherical liquid drop at high Reynolds number. J Fluid Mech 32(2):367–391

    Article  MATH  Google Scholar 

  • Hertz H (1882) Ueber die verdunstung der flussigkeiten, insbesondere des quecksilbers, im luftleeren raume. Ann Phys 253(10):177–193

    Article  Google Scholar 

  • Jackson GS, Avedisian CT (1998) Combustion of unsupported water-in-n-heptane emulsion droplets in a convection-free environment. Int J Heat Mass Transf 41(16):2503–2515

    Article  Google Scholar 

  • Jacques MT, Jordan JB, Williams A, Hadley-Coates L (1977) The combustion of water-in-oil emulsions and the influence of asphaltene content. Symp (Int) Combust 16(1):307–319

    Article  Google Scholar 

  • Javed I, Baek SW, Waheed K (2015) Autoignition and combustion characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures. Combust Flame 162(1):191–206

    Google Scholar 

  • Kadota T, Yamasaki H (2002) Recent advances in the combustion of water fuel emulsion. Prog Energy Combust Sci 28(5):385–404

    Article  Google Scholar 

  • Kadota T, Tanaka H, Segawa D, Nakaya S, Yamasaki H (2007) Microexplosion of an emulsion droplet during Leidenfrost burning. Proc Combust Inst 31(2):2125–2131

    Article  Google Scholar 

  • Kimura M, Ihara H, Okajima S, Iwama A (1986) Combustion behaviors of emulsified hydrocarbons and JP-4/N2H4 droplets at weightless and free falling conditions. Combust Sci Technol 44(5–6):289–306

    Article  Google Scholar 

  • Knudsen M (1915) Die maximale verdampfungsgeschwindigkeit des quecksilbers. Ann Phys 352(13):697–708

    Article  Google Scholar 

  • Kobayasi K (1955) An experimental study on the combustion of a fuel droplet. Symp (Int) Combust 5(1):141–148

    Article  Google Scholar 

  • Kryukov AP, Levashov VY, Sazhin SS (2004) Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. Int J Heat Mass Transf 47(12–13):2541–2549

    Article  MATH  Google Scholar 

  • Kumagai S, Isoda H (1957) Combustion of fuel droplets in a falling chamber. Symp (Int) Combust 6(1):726–731

    Article  Google Scholar 

  • Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 22(7):989–1002

    Article  MATH  Google Scholar 

  • Lasheras JC, Fernandez-Pello AC, Dryer FL (1979) Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions. Combust Sci Technol 21(1–2):1–14

    Article  Google Scholar 

  • Lasheras JC, Fernandez-Pello AC, Dryer FL (1980) Experimental observations on the disruptive combustion of free droplets of multicomponent fuels. Combust Sci Technol 22(5–6):195–209

    Article  Google Scholar 

  • Lasheras JC, Fernandez-Pello AC, Dryer FL (1981) On the disruptive burning of free droplets of alcohol/n-paraffin solutions and emulsions. Symp (Int) Combust 18(1):293–305

    Article  Google Scholar 

  • Law CK (1982) Recent advances in droplet vaporization and combustion. Prog Energy Combust Sci 8(3):171–201

    Article  Google Scholar 

  • Law CK (2010) Combustion physics. Cambridge university press

    Google Scholar 

  • Law CK, Law HK (1982) A d2-law for multicomponent droplet vaporization and combustion. AIAA J 20(4):522–527

    Article  Google Scholar 

  • Law CK, Chung SH, Srinivasan N (1980a) Gas-phase quasi-steadiness and fuel vapor accumulation effects in droplet burning. Combust Flame 38:173–198

    Article  Google Scholar 

  • Law CK, Lee CH, Srinivasan N (1980b) Combustion characteristics of water-in-oil emulsion droplets. Combust Flame 37:125–143

    Article  Google Scholar 

  • Lee A, Law CK (1991) Gasification and shell characteristics in slurry droplet burning. Combust Flame 85(1–2):77–93

    Article  Google Scholar 

  • Leidenfrost JG (1966) On the fixation of water in diverse fire. Int J Heat Mass Transf 9(11):1153–1166

    Article  Google Scholar 

  • Liu Z, Hu X, He Z, Wu J (2012) Experimental study on the combustion and microexplosion of freely falling gelled unsymmetrical dimethylhydrazine (UDMH) fuel droplets. Energies 5(8):3126–3136

    Article  Google Scholar 

  • Michaelides EE, Liang L, Lasek A (1992) The effect of turbulence on the phase change of droplets and particles under non-equilibrium conditions. Int J Heat Mass Transf 35(9):2069–2076

    Article  Google Scholar 

  • Miglani A, Basu S (2015) Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. J Heat Transf 137:1–8

    Article  Google Scholar 

  • Miglani A, Basu S, Kumar R (2014) Insight into instabilities in burning droplets. Phys Fluids 26:32101

    Article  Google Scholar 

  • Mikami M, Yagi T, Kojima N (1998) Occurrence probability of microexplosion in droplet combustion of miscible binary fuels. Symp (Int) Combust 27(2):1933–1941

    Article  Google Scholar 

  • Mura E, Josset C, Loubar K, Huchet G (2010) Effect of dispersed water droplet size in microexplosion phenomenon for water in Oil emulsion. Atomization Sprays 20(9):791–799

    Article  Google Scholar 

  • Mura E, Massoli P, Josset C, Loubar K, Bellettre J (2012) Study of the micro-explosion temperature of water in oil emulsion droplets during the Leidenfrost effect. Exp Thermal Fluid Sci 43:63–70

    Article  Google Scholar 

  • Mura E, Calabria R, Califano V, Massoli P, Bellettre J (2014) Emulsion droplet micro-explosion: analysis of two experimental approaches. Exp Thermal Fluid Sci 56:69–74

    Article  Google Scholar 

  • Niioka T, Sato J (1986) Combustion and microexplosion behavior of miscible fuel droplets under high pressure. Symp (Int) Combust 21(1):625–631

    Article  Google Scholar 

  • Okajima S, Kumagai S (1975) Further investigations of combustion of free droplets in a freely falling chamber including moving droplets. Symp (Int) Combust 15(1):401–417

    Article  Google Scholar 

  • Pati S, Chakraborty S, Som SK (2011) Influence of ambient vapor concentration on droplet evaporation in a perspective of comparison between diffusion controlled model and kinetic model. Int J Heat Mass Transf 54(21–22):4580–4584

    Article  MATH  Google Scholar 

  • Prakash S, Sirignano WA (1978) Liquid fuel droplet heating with internal circulation. Int J Heat Mass Transf 21(7):885–895

    Article  Google Scholar 

  • Prakash S, Sirignano WA (1980) Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase. Int J Heat Mass Transf 23(3):253–268

    Article  MATH  Google Scholar 

  • Randolph AL, Law CK (1986) Time-resolved gasification and sooting characteristics of droplets of alcohol/oil blends and water/oil emulsions. Symp (Int) Combust 21(1):1125–1131

    Article  Google Scholar 

  • Rangel RH, Fernandez-Pello AC (1984) Mixed convective droplet combustion with internal circulation. Combust Sci Technol 42(1–2):47–65

    Article  Google Scholar 

  • Rao DCK, Karmakar S, Som SK (2017) Puffing and micro-explosion behavior in combustion of butanol/jet A-1 and acetone-butanol-ethanol (A-B-E)/jet A-1 fuel droplets. Combust Sci Technol 189(10):1796–1812

    Article  Google Scholar 

  • Renksizbulut M, Nafziger R, Li X (1991) A mass transfer correlation for droplet evaporation in high-temperature flows. Chem Eng Sci 46(9):2351–2358

    Article  Google Scholar 

  • Robinson AJ, Judd RL (2004) The dynamics of spherical bubble growth. Int J Heat Mass Transf 47(23):5101–5113

    Article  MATH  Google Scholar 

  • Roy Choudhury P (1992) Slurry fuels. Prog Energy Combust Sci 18(5):409–427

    Article  Google Scholar 

  • Sadhal SS (1983) Flow past a liquid drop with a large non-uniform radial velocity. J Fluid Mech 133:65–81

    Article  MATH  Google Scholar 

  • Sakai T, Saito M (1983) Single-droplet combustion of coal slurry fuels. Combust Flame 51:141–154

    Article  Google Scholar 

  • Sazhin SS (2006) Advanced models of fuel droplet heating and evaporation. Prog Energy Combust Sci 32(2):162–214

    Article  MathSciNet  Google Scholar 

  • Sazhin SS (2017) Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems. Fuel 196:69–101

    Article  Google Scholar 

  • Sazhin SS, Shishkova IN (2009) Kinetic algorithm for modeling the droplet evaporation process in the presence of heat flux and background gas. Atomization Sprays 19(5):473–489

    Article  Google Scholar 

  • Sazhin SS, Shishkova IN, Kryukov AP, Levashov VY, Heikal MR (2007) Evaporation of droplets into a background gas: kinetic modelling. Int J Heat Mass Transf 50(13–14):2675–2691

    Article  MATH  Google Scholar 

  • Segawa D, Yamasaki H, Kadota T, Tanaka H, Enomoto H, Tsue M (2000) Water-coalescence in an oil-in-water emulsion droplet burning under microgravity. Proc Combust Inst 28(1):985–990

    Article  Google Scholar 

  • Shen C, Cheng WL, Wang K, Lee CF (2010) Estimating the secondary droplet size distribution after micro-explosion of bio-fuel droplets. In: ILASS-Americas Proceedings of the institute for liquid atomization and spray systems—North and South America, vol. 22, Cincinnati

    Google Scholar 

  • Shinjo J, Xia J, Ganippa LC, Megaritis A (2014) Physics of puffing and microexplosion of emulsion fuel droplets. Phys Fluids 26(10):103302

    Article  Google Scholar 

  • Sirignano WA (1983) Fuel droplet vaporization and spray combustion theory. Prog Energy Combust Sci 9(4):291–322

    Article  Google Scholar 

  • Sirignano WA (1988) An integrated approach to spray combustion model development. Combust Sci Technol 58(1–3):231–251

    Article  Google Scholar 

  • Sirignano WA (1990) Fluid dynamics and transport of droplets and sprays. Cambridge University Press

    Google Scholar 

  • Sundaram D, Yang V, Yetter RA (2017) Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog Energy Combust Sci 61:293–365

    Article  Google Scholar 

  • Sundararajan T, Ayyaswamy PS (1984) Hydrodynamics and heat transfer associated with condensation on a moving drop: solutions for intermediate Reynolds numbers. J Fluid Mech 149:33–58

    Article  MATH  Google Scholar 

  • Szekely GA, Faeth GM (1982) Combustion properties of carbon slurry drops. AIAA J 20(3):422–429

    Article  Google Scholar 

  • Takahashi F, Heilweil IJ, Dryer FL (1989) Disruptive burning mechanism of free slurry droplets. Combust Sci Technol 65(1):151–165

    Article  Google Scholar 

  • Tamim J, Hallett WLH (1995) A continuous thermodynamics model for multicomponent droplet vaporization. Chem Eng Sci 50(18):2933–2942

    Article  Google Scholar 

  • Tanvir S, Qiao L (2014) Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels. J Propul Power 31(1):408–415

    Article  Google Scholar 

  • Tong AY, Sirignano WA (1982) Analytical solution for diffusion and circulation in a vaporizing droplet. Symp (Int) Combust 19(1):1007–1020

    Article  Google Scholar 

  • Turns SR, Wong SC, Ryba E (1987) Combustion of aluminum-based slurry agglomerates. Combust Sci Technol 54(1–6):299–318

    Article  Google Scholar 

  • Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett 8(5):1410–1416

    Article  Google Scholar 

  • Walther JH, Koumoutsakos P (2001) Molecular dynamics simulation of nanodroplet evaporation. J Heat Transf 123(4):741–748

    Article  Google Scholar 

  • Wang CH, Chen JT (1996) An experimental investigation of the burning characteristics of water-oil emulsions. Intern Commun Heat Mass Transf 23(6):823–834

    Article  Google Scholar 

  • Wang CH, Law CK (1985) Microexplosion of fuel droplets under high pressure. Combust Flame 59(1):53–62

    Article  Google Scholar 

  • Wang CH, Liu XQ, Law CK (1984) Combustion and microexplosion of freely falling multicomponent droplets. Combust Flame 56(2):175–197

    Article  Google Scholar 

  • Wong SC, Turns SR (1987) Ignition of aluminum slurry droplets. Combust Sci Technol 52(4–6):221–242

    Article  Google Scholar 

  • Wong SC, Turns SR (1989) Disruptive burning of aluminum/carbon slurry droplets. Combust Sci Technol 66(1–3):75–92

    Article  Google Scholar 

  • Xu X, Cheng C, Chowdhury IH (2004) Molecular dynamics study of phase change mechanisms during femtosecond laser ablation. J Heat Transfer 126(5):727–734

    Article  Google Scholar 

  • Yang TH, Pan C (2005) Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient. Int J Heat Mass Transf 48(17):3516–3526

    Article  MATH  Google Scholar 

  • Yang JC, Jackson GS, Avedisian CT (1990) Combustion of unsupported methanol/dodecanol mixture droplets at low gravity. Symp (Int) Combust 23(1):1619–1625

    Article  Google Scholar 

  • Zeng Y, Lee CF (2007) Modeling droplet breakup processes under micro-explosion conditions. Proc Combust Inst 31(2):2185–2193

    Article  Google Scholar 

  • Zhu GS, Reitz RD (2001) A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics. Int J Heat Mass Transf 45(3):495–507

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinibas Karmakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, S., Som, S.K., Rao, D.C.K. (2018). Combustion of Multi-component Fuel Droplets. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplets and Sprays . Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7449-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7449-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7448-6

  • Online ISBN: 978-981-10-7449-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics