Skip to main content

Eco-Friendly Treatment Strategies for Wastewater Containing Dyes and Heavy Metals

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In the present scenario, people are suffering due to the scarcity of freshwater and clean drinking water and it remains a worldwide problem. Fast growth of industries and urban localities and change in lifestyle lead to the increase in the necessity of different kinds of synthetic materials and have led to pollution of water. Water pollution is a major environmental issue faced by the modern world, which leads to ecological disequilibrium that can cause harmful effect on flora and fauna of the ecosystem. Heavy metals and synthetic dyes are the major pollutants to be prioritized in wastewater treatment because of their lethal toxicity. Heavy metal poisoning in human being could have a direct impact on the drinking water, on the very air for breathing, and on the food chain. Synthetic dyes which are in use are highly poisonous and difficult to degrade because of their complex form. At present, researchers are focused on the treatment of wastewater containing toxic and complex organic contaminants. Adsorption is a promising technology for treating wastewater with heavy metal contaminants. Recovery and reusability of the adsorbents make adsorption an eco-friendly and cost-effective technology. Photocatalysis is a highly proven treatment technique for dyes intoxicated wastewater. Conversion of non-biodegradable and complex organic dyes into simple biodegradable molecules by photocatalysis is a greater addition in wastewater treatment. Concentration of heavy metal ions could be measured throughout the treatment process using Atomic Absorption Spectrophotometer (AAS), and for dyes, UV–Visible Spectrophotometer could be employed. Kinetic modeling and adsorption isotherms would pave the way for the better understanding of the rate and nature of the adsorption of heavy metals. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), and eco-toxicity studies are used to monitor the treatment processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed MN, Ram RN (1992) Removal of basic dye from waste-water using silica as adsorbent. Environ Pollut 77:79–86

    Article  CAS  Google Scholar 

  • Ahmed S, Chughtai S, Keane MA (1998) The removal of cadmium and lead from aqueous solution by ion exchange with NaY zeolite. Sep Purif Technol 13(1):57–64

    Article  CAS  Google Scholar 

  • Aklil A, Mouflih M, Sebti S (2004) Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. J Hazard Mater 112(3):183–190

    Article  CAS  Google Scholar 

  • Al-Degs Y, Khraisheh MAM, Allen SJ, Ahmad MNA (2001) Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons. Sep Sci Technol 36:91–102

    Article  CAS  Google Scholar 

  • Al-Shammiri M, Al-Saffar A, Bohamad S, Ahmed M (2005) Waste water quality and reuse in irrigation in Kuwait using microfiltration technology in treatment. Desalination 185(1–3):213–225

    Article  CAS  Google Scholar 

  • Backhaus WK, Klumpp E, Narres HD, Schwuger MJ (2001) Adsorption of 2,4-dichlorophenol on montmorillonite and silica: influence of nonionic surfactants. J Colloid Interface Sci 242:6–13

    Article  CAS  Google Scholar 

  • Baig S, Liechti PA (2001) Ozone treatment for biorefractory COD removal. Water Sci Technol J Int Assoc Water Pollut Res 43(2):197–204

    CAS  Google Scholar 

  • Bao ML, Griffini O, Santianni D, Barbieri K, Burrini D, Pantani F (1999) Removal of bromate ion from water using granular activated carbon. Water Res 33:2959–2970

    Article  CAS  Google Scholar 

  • Bele M, Kodre A, Arc I, Grdadolnik J, Pejovnik S, Besenhard JO (1998) Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon 36:1207–1212

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157(2–3):277–296

    Article  CAS  Google Scholar 

  • Brennan JK, Bandosz TJ, Thomson KT, Gubbins KE (2001) Water in porous carbons. Colloids Surf A 187–188:539–568

    Article  Google Scholar 

  • Candal R, Estrada W (2005) El fotocatalizador: síntesis, propiedades y limitaciones. Tecnologíassolares para la desinfección y descontaminación del agua, pp 129–145

    Google Scholar 

  • Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Biores Technol 97(13):1503–1508

    Article  CAS  Google Scholar 

  • Chen JP, Wu S, Chong K-H (2003) Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 41(10):1979–1986

    Article  CAS  Google Scholar 

  • Chen Y, Liu Y, Zhou Q, Gu G (2005) Enhanced phosphorus biological removal from wastewater effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochem Eng J 27(1):24–32

    Article  CAS  Google Scholar 

  • Chern JM, Chien YW (2002) Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves. Water Res 36:647–655

    Article  CAS  Google Scholar 

  • Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere 58:1049–1070

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2–3):220–229

    Article  CAS  Google Scholar 

  • Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous fenton catalyst. Chem Sus Chem 5:46–64

    Article  CAS  Google Scholar 

  • Ellis J, Korth W (1993) Removal of geosmin and methylisoborneol from drinking water by adsorption on ultrastable zeolite-Y. Water Res 27:535–539

    Article  CAS  Google Scholar 

  • Escobar C, Soto-Salazar C, Inés Toral M (2006) Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. J Environ Manage 81(4):384–391

    Article  CAS  Google Scholar 

  • Espinosa JC, Navalón S, Primo A, Moral M, Fernández Sanz J, Álvaro M, García H (2015) Graphenes as efficient metal-free fenton catalysts. Chem Eur J 21:11966–11971

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645

    Google Scholar 

  • Foo KY, Hameed BH (2010) Detoxification of pesticide waste via activated carbon adsorption process. J Hazard Mater 175:1–11

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Biores Technol 79(3):251–262

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Donald B, Trykc A (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Google Scholar 

  • Gabaldon G, Marzal P, Ferrer J, Seco A (1996) Single and competitive adsorption of Cd2+ and Zn2+ onto a granular activated carbon. Water Res 30:3050–3060

    Article  CAS  Google Scholar 

  • Gabaldon G, Marzal P, Seco A, Gonzalez JA (2000) Cadmium and copper removal by a granular activated carbon in laboratory column systems. Sep Sci Technol 35:1039–1053

    Article  CAS  Google Scholar 

  • Gomez V, Larrechi MS, Callao MP (2007) Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69:1151–1158

    Article  CAS  Google Scholar 

  • Groffman A, Peterson S, Brookins D (1992) Removing lead from wastewater using zeolite. Water Environ Technol 4:4–59

    Google Scholar 

  • Haydar S, Ferro-Garcia MA, Rievera-Utrilla J, Joly JP (2003) Adsorption of p-nitrophenol on an activated carbon with different oxidations. Carbon 41:387–395

    Article  CAS  Google Scholar 

  • Helfferich F (1962) Ion Exchange. McGraw-Hill Book Co., New York

    Google Scholar 

  • Hernandez-Ramirez O, Holmes SM (2008) Novel and modified materials for wastewater treatment applications. J Mater Chem 18(24):2751–2761

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Huang WJ, Cheng YL (2008) Effect of characteristics of activated carbon on removal of bromated. Sep Purif Technol 59:101–107

    Google Scholar 

  • Ibach H (2006) Physics of surfaces and interfaces. Springer

    Google Scholar 

  • Inglezakis VJ, Zorpas AA, Loizidou MD, Grigoropoulou HP (2005) The effect of competitive cations and anions on ion exchange of heavy metals. Sep Purif Technol 46(3):202–207

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B (2004) Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv Colloid Interface Sci 110:19–48

    Article  CAS  Google Scholar 

  • Khalil LB (1996) Adsorption characteristics of activated carbon obtained from rice husks by treatment with phosphoric acid. Adsorp Sci Technol 13:317–325

    Article  CAS  Google Scholar 

  • Kikuchi T, Tanaka S (2012) Biological removal and recovery of toxic heavy metals in water environment. Crit Rev Environ Sci Technol 42(10):1007–1057

    Article  CAS  Google Scholar 

  • Krueger A (2007) The structure and reactivity of nanoscale diamond. J Mater Chem 1485–1492

    Google Scholar 

  • Ku Y, Chiou HM (2002) The adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut 133:349–361

    Google Scholar 

  • Kuhad RC, Sood N, Tripathi KK, Singh A, Ward OP (2004) Developments in microbial methods for the treatment of dye effluents. Adv Appl Microbiol 56:185–213

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl 24:1–39

    Google Scholar 

  • Langhals H (2004) Color chemistry synthesis, properties and applications of organic dyes and pigments, 3rd revised edn by Heinrich Zollinger

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Litter M (2005) Tecnologíasavanzadas de oxidación: tecnologíassolares. Safe Water, Photocatalytic Tecnology, pp 73–90

    Google Scholar 

  • Lu H, Zhu L, Zhu N (2009) Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos Environ 43(4):978–983

    Google Scholar 

  • Mahmudov R, Huang CP (2010) Perchlorate removal by activated carbon adsorption. Sep Purif Technol 70:329–337

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Vidal A, Ritcher C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 1–15

    Google Scholar 

  • Malato S, Blanco J, Estrada C, Bandala E (2011) Purificación de aguasporfotocatálisisheterogénea: estado del arte

    Google Scholar 

  • Malhas AN, Abuknesha RA, Price RH (2002) Removal of detergents from protein extracts using activated charcoal prior to immunological analysis. J Immunol Methods 264:37–43

    Article  CAS  Google Scholar 

  • McCray SB, Ray RJ (1987) Concentration of synfuel process condensates by reverse osmosis. Sep Sci Technol 22(2–3):745–762

    Article  CAS  Google Scholar 

  • McCreary JJ, Snoeyink VL (1980) Characterization and activated carbon adsorption of several humic substances. Water Res 14:151–160

    Article  CAS  Google Scholar 

  • McKay G, Otterburn MS, Sweeney AG (1980) The removal of colour from effluent using various adsorbents—III. Silica: rate processes. Water Res 14(1):15–20

    Article  CAS  Google Scholar 

  • McKay G, Bino MJ, Altameni AR (1985) The adsorption of various pollutants from aqueous solutions onto activated carbon. Water Res 19:491–495

    Article  CAS  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122(1–2):161–170

    Article  CAS  Google Scholar 

  • Metes A, Kovacevic D, Vujevic D, Papic S (2004) The role of zeolites in wastewater treatment of printing inks. Water Res 38:3373–3381

    Article  CAS  Google Scholar 

  • Mohammed-Azizi F, Dib S, Boufatit M (2013) Removal of heavy metals from aqueous solutions by Algerian bentonite. Desalin Water Treat 51(22–24):4447–4458

    Article  CAS  Google Scholar 

  • Monier M, Nawar N, Abdel-Latif DA (2010) Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions. J Hazard Mater 184(1–3):118–125

    Article  CAS  Google Scholar 

  • Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents for the removal of pollutants from the aqueous phase. Mater. Res. Soc. Bull. 26:890–894

    Article  CAS  Google Scholar 

  • Moriguchi T, Yano K, Tahara M, Yaguchi K (2005) Metal-modified silica adsorbents for removal of humic substances in water. J Colloid Interface Sci 283:300–310

    Article  CAS  Google Scholar 

  • Morrison S (1998) Research and application of permeable reactive barriers, U.S. Department of Energy

    Google Scholar 

  • Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92:42–48

    Article  CAS  Google Scholar 

  • Naiya TK, Bhattacharya AK, Das SK (2009) Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interface Sci 333:14–26

    Article  CAS  Google Scholar 

  • Najm IN, Snoeyink VL, Richard Y (1993) Removal of 2,4,6-trichlorophenol and natural organic matters from water supplies using PAC in floc-blanket reactors. Water Res 27:551–560

    Article  CAS  Google Scholar 

  • Okolo B, Park C, Keane MA (2000) Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media. J Colloid Interface Sci 226:308–317

    Article  CAS  Google Scholar 

  • Pelekani C, Snoeyink VL (2000) Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon 38:1423–1436

    Article  CAS  Google Scholar 

  • Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B-Environ 47:219–256

    Article  CAS  Google Scholar 

  • Pereira MFR, Soares SF, Orfao JJM, Figuerredo JL (2003) Adsorption of dyes on activated carbon: influence of surface chemical groups. Carbon 41:811–821

    Article  CAS  Google Scholar 

  • Perez-Candela M, Martin-Martinez JM, Torregrosa-Macia R (1995) Chromium(VI) removal with activated carbons. Water Res 29:2174–2180

    Article  CAS  Google Scholar 

  • Periyasamy Karthik, Laishram Santhalembi, Mortha Gérard, Aurousseau Marc, Subramanian Sivanesan (2016b) Carrier-free co-immobilization of xylanase, cellulase and β-1,3-glucanase as combined cross-linked enzyme aggregates (combi-CLEAs) for one-pot saccharification of sugarcane bagasse; m RSC. Advances 6(39):32849–32857

    CAS  Google Scholar 

  • Peters TA (1991) Desalination and industrial waste water treatment with the ROCHEM disc module DT. Desalination 83(1–3):159–172

    Article  CAS  Google Scholar 

  • Premkumar MP, Vinoth Kumar V, Senthil Kumar P, Baskaralingam P, Sathyaselvabala V, Vidhyadevi T, Sivanesan S (2013) Kinetic and equilibrium studies on the biosorption of textile dyes onto Plantago ovata seeds. Korean J Chem Eng 30(6):1248–1256

    Article  CAS  Google Scholar 

  • Rafii F, Fraeankalin W, Cerniglia CE (1990) Azo reductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56(7):2146–2151

    CAS  Google Scholar 

  • Rangnekar DW, Singh PP (1980) Introduction to synthetic dyes. Himalaya Pub, Ho, India

    Google Scholar 

  • Ratna Kumar P, Chaudhari S, Khilar KC, Mahajan SP (2004) Removal of arsenic from water by electrocoagulation. Chemosphere 55(9):1245–1252

    Article  CAS  Google Scholar 

  • Rieman W, Walton H (1970) Ion exchange in analytical chemistry, international series of monographs in analytical chemistry, vol 38. Pergamon Press, Oxford

    Google Scholar 

  • Rivera-Utrilla J, Sanchez-Polo M, Carrasco-Marin F (2003) Adsorption of 1,3,6-naphthalenetrisulfonic acid on activated carbon in the presence of Cd(II), Cr(III), and Hg(II): importance of electrostatic interactions. Langmuir 19:10857–10861

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    Article  CAS  Google Scholar 

  • Rubio J, Tessele F (1997) Removal of heavy metal ions by adsorptive particulate flotation. Miner Eng 10(7):671–679

    Article  CAS  Google Scholar 

  • Rudzinski WE, Guthrie SR, Cassidy PE (1988) Poly (Schiff base) polymers based on substituted biphenyl. J Polym Sci Part A Polym Chem 26(6):1677–1680

    Article  CAS  Google Scholar 

  • Saad R, Hamoudi S, Belkacemi K (2008) Adsorption of phosphate and nitrate anions on ammonium-functionalized mesoporous silicas. J Porous Mater 15:315–323

    Article  CAS  Google Scholar 

  • Saito I (1984) The removal of hexacyanoferrate (II) and (III) ions in dilute aqueous solution by activated carbon. Water Res 18:319–323

    Google Scholar 

  • Sakaguchi T, Nakajima A (1986) Recovery of uranium by immobilized polyhydroxyanthraquinone. Sep Sci Technol 21(5):519–534

    Article  CAS  Google Scholar 

  • Sanchez-Polo M, Rivera-Utrilla J (2002) Adsorbent–adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons. Environ Sci Technol 36:3850–3854

    Article  CAS  Google Scholar 

  • Sarioglu M, Akkoyun S, Bisgin T (2010) Inhibition effects of heavy metals (copper, nickel, zinc, lead) on anaerobic sludge. Desalin Water Treat 23(1–3):55–60

    Article  CAS  Google Scholar 

  • Scaiano J, Stamplecoskie K, Hallett-Tapley G (2012) Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem Comm 4798–4808

    Google Scholar 

  • Schneider Jenny, Matsuoka Masaya, Takeuchi Masato, Jinlong Zhang Yu, Horiuchi Masakazu Anpo, Bahnemann Detlef W (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep Purif Technol 36:139–147

    Article  CAS  Google Scholar 

  • Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Sotelo JL, Ovejero G, Delgado JA, Martinez I (2002) Comparison of adsorption equilibrium and kinetics of four chlorinated organics from water onto GAC. Water Res 36:599–608

    Article  CAS  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8

    Article  CAS  Google Scholar 

  • Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPS) for waste water treatment—a mini review. Global NEST J 10(3):376–385

    Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Biores Technol 99(14):6017–6027

    Article  CAS  Google Scholar 

  • Suzuki M (1990) Adsorption engineering. Kodansha

    Google Scholar 

  • Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physicochim. URSS. 12:217–225

    Google Scholar 

  • Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF (2001) Utilization of agricultural waste corn cob for the preparation of carbon adsorbent. J Environ Sci Health B 36:677–686

    Article  CAS  Google Scholar 

  • Uçurum M (2009) A study of removal of Pb heavy metal ions from aqueous solution using lignite and a new cheap adsorbent (lignite washing plant tailings). Fuel 88(8):1460–1465

    Article  Google Scholar 

  • Van der Heen P (1977) The removal of traces of heavy metals from drinking water and industrial effluent with ion exchanger, The Regional Chemical Society Meeting, 1977

    Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    Article  CAS  Google Scholar 

  • Wang H, Kang J, Liu H, Qu J (2009) Preparation of organically functionalized silica gel as adsorbent for copper ion adsorption. J. Environ. Sci. 21:1473–1479

    Article  CAS  Google Scholar 

  • Wang C, Liu H, Sun Z (2012) Heterogeneous photo-Fenton reaction catalyzed by nanosized iron oxides for water treatment. J. Photoenergy, Int, p 801694

    Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  • Wu Y, Zhou J, Wen Y, Jiang L, Wu Y (2012) Biosorption of heavy metal ions (Cu2+, Mn2+, Zn2+, and Fe3+) from aqueous solutions using activated sludge: comparison of aerobic activated sludge with anaerobic activated sludge. Appl Biochem Biotechnol 168(8):2079–2093

    Article  CAS  Google Scholar 

  • Youn SJ, Myoungho P (2008) Removal of heavy metal ions by electrocoagulation for continuous use of Fe2+/Fe3+—mediated electrochemical oxidation solutions. Bull Korean Chem Soc 29(5):974–978

    Article  Google Scholar 

  • Zaki NG, Khattab IA, Abd El-Monem NM (2007) Removal of some heavy metals by CKD leachate. J Hazard Mater 147(1–2):21–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivanesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Premkumar, M.P., Thiruvengadaravi, K.V., Senthil Kumar, P., Nandagopal, J., Sivanesan, S. (2018). Eco-Friendly Treatment Strategies for Wastewater Containing Dyes and Heavy Metals. In: Gupta, T., Agarwal, A., Agarwal, R., Labhsetwar, N. (eds) Environmental Contaminants. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7332-8_14

Download citation

Publish with us

Policies and ethics