Skip to main content

Review on Integration of Solar Air Heaters with Thermal Energy Storage

  • Chapter
  • First Online:
Applications of Solar Energy

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 2154 Accesses

Abstract

Solar radiation on the earth’s surface is abundant and truly a zero-carbon energy source. The solar energy needs to be harnessed using various efficient equipments, which has a very low carbon footprint. Various solar thermal energy harvesting techniques have been used which employ solar radiation incident on the optimal area with the help of concentrators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WEC (2016) World energy resources. World Energy Council report, vol 1, p 468

    Google Scholar 

  2. IDB (2011) Chaglla hydropower project

    Google Scholar 

  3. Hekkert MP, Hendriks FHJF, Faaij APC, Neelis ML (2005) Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 33(5):579–594

    Article  Google Scholar 

  4. Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234

    Article  Google Scholar 

  5. Umbach F (2010) Global energy security and the implications for the EU. Energy Policy 38(3):1229–1240

    Article  Google Scholar 

  6. Burroughs WJ (2003) Book reviews. Prometheus 21(1):120–139

    Article  Google Scholar 

  7. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187

    Google Scholar 

  8. Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242):1158–1162

    Article  Google Scholar 

  9. Young OR (2017) A. Society, I. Law, T. A. Journal, and I. Law, Review reviewed work (s): The collapse of the kyoto protocol and the struggle to slow global warming by David G. Victor. Am J Int Law 96(3) (Jul 2002):736–741

    Google Scholar 

  10. Harb A (2011) Energy harvesting: state-of-the-art. Renew. Energy 36(10):2641–2654

    Article  Google Scholar 

  11. Galik CS, Abt RC, Latta G, Meley A, Henderson JD (2016) Meeting renewable energy and land use objectives through public-private biomass supply partnerships. Appl Energy 172:264–274

    Article  Google Scholar 

  12. Sen Z (2008) Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy

    Google Scholar 

  13. Kalogirou SA, Karellas S, Braimakis K, Stanciu C, Badescu V (2016) Exergy analysis of solar thermal collectors and processes. Prog Energy Combust Sci 56:106–137

    Article  Google Scholar 

  14. Karanasios K, Parker P (2016) Recent developments in renewable energy in remote aboriginal

    Google Scholar 

  15. (2016) Graph, See Government, The Ministry, The Pumps, Solar Ministry, The Energy, Renewable Ministry

    Google Scholar 

  16. Meisen P, Quéneudec E (2006) Overview of renewable energy potential of India, October, pp 1–20

    Google Scholar 

  17. Bhawan SP, Marg S (2016–17) Annual report of contribution of different sectors to gross value added in 2015–16. Government of india, Ministry of statistics and programme implementation

    Google Scholar 

  18. Duffie JA, Beckman WA, McGowan J (1985) Solar engineering of thermal processes. Am J Phys 53(4):382

    Article  Google Scholar 

  19. Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol Energy 4(3):1–19

    Article  Google Scholar 

  20. Samimi A, Zarinabadi S, Samimi M (2012) Solar energy application on environmental protection, vol 1, no 8, pp 21–24

    Google Scholar 

  21. Lodhi MAK (2004) Helio-hydro and helio-thermal production of hydrogen. Int J Hydrogen Energy 29(11):1099–1113

    Google Scholar 

  22. Buchberg H, Catton I, Edwards DK (1976) Natural convection in enclosed spaces—a review of application to solar energy collection. J Heat Transf 98(2):182

    Article  Google Scholar 

  23. Klein SA (1978) Calculation of flat-plate collector utilizability. Sol Energy 21(5):393–402

    Article  MathSciNet  Google Scholar 

  24. Singh PL, Sarviya RM, Bhagoria JL (2010) Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manag 51(2):329–337

    Article  Google Scholar 

  25. Coventry JS (2005) Performance of a concentrating photovoltaic/thermal solar collector. Sol Energy 78(2):211–222

    Article  Google Scholar 

  26. Sultana T, Morrison GL, Rosengarten G (2012) Thermal performance of a novel rooftop solar micro-concentrating collector. Sol Energy 86(7):1992–2000

    Article  Google Scholar 

  27. Esen M (2000) Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Sol Energy 69(1):15–25

    Article  Google Scholar 

  28. Hu E, Yang Y, Nishimura A, Yilmaz F, Kouzani A (2010) Solar thermal aided power generation. Appl Energy 87(9):2881–2885

    Article  Google Scholar 

  29. Huang BJ, Ding WL, Huang YC (2011) Long-term field test of solar PV power generation using one-axis 3-position sun tracker. Sol Energy 85(9):1935–1944

    Article  Google Scholar 

  30. Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N (2006) Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 31(12):1839–1854

    Article  Google Scholar 

  31. Tiwari GN, Dimri V, Chel A (2009) Parametric study of an active and passive solar distillation system: energy and exergy analysis. Desalination 242(1–3):1–18

    Article  Google Scholar 

  32. Khas H (1996) Pergamon PII: s0360-5442(%)ooo15-1, vol 21, no 9, pp 805–808

    Google Scholar 

  33. Kumar S, Tiwari GN, Singh HN (2000) Annual performance of an active solar distillation system. Desalination 127(1):79–88

    Article  Google Scholar 

  34. Tiwari GN, Singh HN, Tripathi R (2003) Present status of solar distillation. Sol Energy 75(5):367–373

    Article  Google Scholar 

  35. Aberle AG (2009) Thin-film solar cells. Thin Solid Films 517(17):4706–4710

    Article  Google Scholar 

  36. Guha S, Yang J (1999) Science and technology of amorphous silicon alloy photovoltaics. IEEE Trans Electron Devices 46(10):2080–2085

    Article  Google Scholar 

  37. Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322

    Article  Google Scholar 

  38. Nandwani SS (1996) Solar cookers—cheap technology with high ecological benefits. Ecol Econ 17(2):73–81

    Article  Google Scholar 

  39. Telkes M (1959) Solar cooking ovens. Sol Energy 3(1):1–11

    Article  Google Scholar 

  40. Sharma SD, Iwata T, Kitano H, Sagara K (2005) Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energy 78(3):416–426

    Article  Google Scholar 

  41. Savin H et al (2015) Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol 10(7):624–628

    Article  Google Scholar 

  42. Shah AV et al (2004) Thin-film silicon solar cell technology. Prog Photovolt Res Appl 12(23):113–142

    Article  Google Scholar 

  43. Shah AV, Platz R, Keppner H (1995) Thin-film silicon solar cells: a review and selected trends. Sol Energy Mater Sol Cells 38(1–4):501–520

    Article  Google Scholar 

  44. Wenham SR, Green MA (1996) Silicon solar cells. Prog Photovolt 4(1):3–33

    Google Scholar 

  45. Mohamad AA (1997) High efficiency solar air heater. Sol Energy 60(2):71–76

    Article  Google Scholar 

  46. Kumar A, Saini RP, Saini JS (2014) A review of thermohydraulic performance of artificially roughened solar air heaters. Renew Sustain Energy Rev 37:100–122

    Article  Google Scholar 

  47. Close DJ (1963) Solar air heaters for low and moderate temperature applications. Sol Energy 7(3):117–124

    Article  Google Scholar 

  48. Kumar A, Saini RP, Saini JS (2012) Heat and fluid flow characteristics of roughened solar air heater ducts—a review. Renew Energy 47:77–94

    Article  Google Scholar 

  49. Gupta CL, Garg HP (1967) Performance studies on solar air heaters. Sol Energy 11(1):25–31

    Article  Google Scholar 

  50. Bhargava AK, Garg HP, Sharma VK (1982) Evaluation of the performance of air heaters of conventional designs. Sol Energy 29(6):523–533

    Article  Google Scholar 

  51. Biondi P, Cicala L, Farina G (1988) Performance analysis of solar air heaters of conventional design. Sol Energy 41(1):101–107

    Article  Google Scholar 

  52. Loveday DL (1988) Thermal performance of air-heating solar collectors with thick, poorly conducting absorber plates. Sol Energy 41(6):593–602

    Article  Google Scholar 

  53. Satcunanathan S, Deonarine S (1973) A two-pass solar air heater. Sol Energy 15(1):41–49

    Article  Google Scholar 

  54. Garg HP, Sharma VK, Bhargava AK (1985) Theory of multiple-pass solar air heaters. Energy 10(5):589–599

    Article  Google Scholar 

  55. Wijeysundera NE, Ah LL, Tjioe LE (1982) Thermal performance study of two-pass solar air heaters. Sol Energy 28(5):363–370

    Article  Google Scholar 

  56. Science E (1966) An investigation on packed-bed collectors

    Google Scholar 

  57. Lansing FL, Clarke V, Reynolds R (1979) A high performance porous flat-plate solar collector. Energy 4(4):685–694

    Article  Google Scholar 

  58. Parker BF, Lindley MR, Colliver DG, Murphy WE (1993) Thermal performance of three solar air heaters. Sol Energy 51(6):467–479

    Article  Google Scholar 

  59. Lalude O, Buchberg H (1971) Design and application of honeycomb porous-bed solar-air heaters. Sol Energy 13(2):223–242

    Article  Google Scholar 

  60. Selçuk K (1971) Thermal and economic analysis of the overlapped-glass plate solar-air heater. Sol Energy 13(2):165–191

    Article  Google Scholar 

  61. Choudhury C, Garg HP (1991) Evaluation of a jet plate solar air heater. Sol Energy 46(4):199–209

    Article  Google Scholar 

  62. Klein SA, Beckman WA, Duffie JA (1976) A design procedure for solar heating systems. Sol Energy 18(2):113–127

    Article  Google Scholar 

  63. Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sustain Energy Rev 14(8):2298–2314

    Article  Google Scholar 

  64. Bal LM, Satya S, Naik SN, Meda V (2011) Review of solar dryers with latent heat storage systems for agricultural products. Renew Sustain Energy Rev 15(1):876–880

    Article  Google Scholar 

  65. Schröder J, Gawron K (1981) Latent heat storage. Int J Energy 5(March 1980):103–109

    Google Scholar 

  66. Salunkhe PB, Krishna DJ (2017) Investigations on latent heat storage materials for solar water and space heating applications. J Energy Storage 12:243–260

    Article  Google Scholar 

  67. Rabin Y, Bar-Niv I, Korin E, Mikic B (1995) Integrated solar collector storage system based on a salt-hydrate phase-change material. Sol Energy 55(6):435–444

    Article  Google Scholar 

  68. Hasan A (1994) Phase change material energy storage system employing palmitic acid. Sol Energy 52(2):143–154

    Article  MathSciNet  Google Scholar 

  69. Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11(6):1146–1166

    Article  Google Scholar 

  70. Naphon P, Kangtragool B (2003) Theoretical study on heat transfer characteristics and performance of the plat-plate solar air heaters. Int Commun Heat Mass Transf 30(3):1125–1136

    Article  Google Scholar 

  71. Morrison DJ, Abdel-Khalik SI (1978) Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Sol Energy 20(1):57–67

    Article  Google Scholar 

  72. Jurinak JJ, Abdel-Khalik SI (1978) Properties optimization for phase-change energy storage in air-based solar heating systems. Sol Energy 21(5):377–383

    Article  Google Scholar 

  73. Hammou ZA, Lacroix M (2006) A new PCM storage system for managing simultaneously solar and electric energy, vol 38, pp 258–265

    Google Scholar 

  74. Energy R (2000) Experimental and theoretical investigation of a solar heating system with heat pump, vol 21

    Google Scholar 

  75. Mettawee ES, Assassa GMR (2006) Experimental study of a compact PCM solar collector, vol 31, pp 2958–296

    Google Scholar 

  76. Zhao DL, Li Y, Dai YJ, Wang RZ (2011) Optimal study of a solar air heating system with pebble bed energy storage, vol 52, pp 2392–2400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj V. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, P., Patil, D.V., Powar, S. (2018). Review on Integration of Solar Air Heaters with Thermal Energy Storage. In: Tyagi, H., Agarwal, A., Chakraborty, P., Powar, S. (eds) Applications of Solar Energy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7206-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7206-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7205-5

  • Online ISBN: 978-981-10-7206-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics