Skip to main content

Shock Waves

  • Reference work entry
  • First Online:

Abstract

We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Academic, New York, 2013)

    Google Scholar 

  • G.P. Agrawal, C. Headley III, Kink solitons and optical shocks in dispersive nonlinear media. Phys. Rev. A 46, 1573 (1992)

    Article  CAS  Google Scholar 

  • S.A. Akhmanov, D.P. Krindach, A.V. Migulin, A.P. Sukhorukov, R.V. Khokhlov, Thermal self-action of laser beams. IEEE J. Quantum Electron. QE-4, 568 (1968)

    Article  Google Scholar 

  • N. Akhmediev, M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995)

    CAS  Google Scholar 

  • D. Anderson, S. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)

    Article  Google Scholar 

  • D. Anderson, M. Desaix, M. Lisak, M.L. Quiroga-Teixeiro, Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B 9, 1358 (1992)

    Article  Google Scholar 

  • G. Biondini, Y. Kodama, On the Whitham equations for the defocusing nonlinear Schrödinger equation with step initial data. J. Nonlinear Sci. 16, 435–481 (2006)

    Article  Google Scholar 

  • D. Bohm, D.J. Hiley, Measurement understood through the quantum potential approach. Found. Phys. 14, 255 (1984)

    Article  Google Scholar 

  • D. Cai, A.R. Bishop, N. Gronbech-Jensen, B. Malomed, Dark shock waves in the nonlinear Schrödinger system with internal losses. Phys. Rev. Lett. 78, 223 (1997)

    Article  CAS  Google Scholar 

  • M. Conforti, S. Trillo, Dispersive wave emission from wave breaking. Opt. Lett. 38, 3815–3818 (2013)

    Article  Google Scholar 

  • M. Conforti, F. Baronio, S. Trillo, Resonant radiation shed by dispersive shock waves. Phys. Rev. A 89, 013807 (2014)

    Article  Google Scholar 

  • M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, Parametric excitation of multiple resonant radiations from localized wavepackets. Sci. Rep. 5, 9433 (2015)

    Article  Google Scholar 

  • C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, S. Trillo, Observation of a gradient catastrophe generating solitons. Phys. Rev. Lett. 102, 083902 (2009)

    Article  Google Scholar 

  • C. Conti, S. Stark, P.S.J. Russell, F. Biancalana, Multiple hydrodynamical shocks induced by the Raman effect in photonic crystal fibres. Phys. Rev. A 82, 013838 (2010)

    Article  Google Scholar 

  • F. Demartini, C.H. Townes, T.K. Gustafson, P.L. Kelley, Self-steepening of light pulses. Phys. Rev. 164, 312 (1967)

    Article  Google Scholar 

  • B. Dubrovin, S. Novikov, The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogoliubov-Whitham averaging method. Akademiia Nauk SSSR, Doklady 270, 781–785 (1983)

    Google Scholar 

  • B. Dubrovin, T. Grava, C. Klein, A. Moro, On critical behaviour in systems of Hamiltonian partial differential equations. J. Nonlinear Sci. 25, 631–707 (2015)

    Article  Google Scholar 

  • G.A. El, M.A. Hoefer, Dispersive shock waves and modulation theory. Physica D 333, 11 (2016)

    Article  Google Scholar 

  • G.A. El, V.V. Geogjaev, A.V. Gurevich, A.L. Krylov, Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Physica D 87, 186–192 (1995)

    Article  Google Scholar 

  • J. Fatome, C. Finot, G. Millot, A. Armaroli, S. Trillo, Observation of optical undular bores in multiple four-wave mixing. Phys. Rev. X 4, 021022 (2014)

    Google Scholar 

  • E. Fermi, J. Pasta, S. Ulam, in Collected Papers of Enrico Fermi, vol. 2, ed. by E. Segré (The University of Chicago, Chicago, 1965), pp. 977–988

    Google Scholar 

  • C. Finot, B. Kibler, L. Provost, S. Wabnitz, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)

    Article  CAS  Google Scholar 

  • M.G. Forest, K.T.R. McLaughlin, Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers. J. Nonlinear Sci. 8, 43 (1998)

    Article  Google Scholar 

  • A. Fratalocchi, C. Conti, G. Ruocco, S. Trillo, Free-energy transition in a gas of noninteracting nonlinear wave particles. Phys. Rev. Lett. 101, 044101 (2008)

    Article  CAS  Google Scholar 

  • J. Garnier, G. Xu, S. Trillo, A. Picozzi, Incoherent dispersive shocks in the spectral evolution of random waves. Phys. Rev. Lett. 111, 113902 (2013)

    Article  Google Scholar 

  • N. Ghofraniha, C. Conti, G. Ruocco, S. Trillo, Shocks in nonlocal media. Phys. Rev. Lett. 99, 043903 (2007)

    Article  Google Scholar 

  • D. Grischkowsky, E. Courtens, J.A. Armstrong, Observation of self-steepening of optical pulses with possible shock formation (Rb vapour). Phys. Rev. Lett. 31, 422 (1973)

    Article  CAS  Google Scholar 

  • A. Gurevich, A.L. Krylov, Dissipationless shock waves in media with positive dispersion. Sov. Phys. JETP 65, 944–953 (1987)

    Google Scholar 

  • A. Gurevich, L. Pitaevskii, Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291 (1974)

    Google Scholar 

  • A. Gurevich, A. Shvartsburg, Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 31, 1084–1089 (1970)

    Google Scholar 

  • J.-P. Hamaide, P. Emplit, Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres. Electron. Lett. 24, 819 (1988)

    Article  Google Scholar 

  • J.L. Hammack, H. Segur, The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech. 65, 289–314 (1974)

    Article  Google Scholar 

  • J. Hietarinta, T. Kuusela, B.A. Malomed, Shock waves in the dissipative Toda lattice. J. Phys. A. 28 3015–3024 (1995)

    Article  Google Scholar 

  • M. Hoefer, M. Ablowitz, I. Coddington, E. Cornell, P. Engels, V. Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics. Phys. Rev. A 74, 023623 (2006)

    Article  Google Scholar 

  • P.A.P. Janantha, P. Sprenger, M.A. Hoefer, M. Wu, Observation of self-cavitating envelope dispersive shock waves in yttrium iron garnet thin films. Phys. Rev. Lett. 119, 024101 (2017)

    Article  Google Scholar 

  • A. Kamchatnov, Nonlinear Periodic Waves and Their Modulations: An Introductory Course (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  • S. Kamvissis, K.D.T.-R. McLaughlin, P. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (Princeton University Press, Princeton, 2003)

    Book  Google Scholar 

  • V.I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon, Oxford, 1975), p. 101

    Google Scholar 

  • Y.S. Kivshar, B.A. Malomed, Raman-induced optical shocks in nonlinear fibers. Opt. Lett. 18, 485 (1993)

    Article  CAS  Google Scholar 

  • Y.S. Kivshar, S.K. Turitsyn, Optical double layers. Phys. Rev. A 47, R3502 (1993)

    Article  CAS  Google Scholar 

  • Y. Kodama, The Whitham equations for optical communications: mathematical theory of NRZ. SIAM J. Appl. Math. 59, 2162 (1999)

    Article  Google Scholar 

  • Y. Kodama, S. Wabnitz, Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291 (1995)

    Article  CAS  Google Scholar 

  • P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (SIAM, Philadelphia, 1973)

    Book  Google Scholar 

  • R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • Y. Liu, H. Tu, S.A. Boppart, Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Opt. Lett. 37, 2172 (2012)

    Article  Google Scholar 

  • L.A. Lugiato, R. Lefever, Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987)

    Article  CAS  Google Scholar 

  • M.D. Maiden, N.K. Lowman, D.V. Anderson, M.E. Schubert, M.A. Hoefer, Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits. Phys. Rev. Lett. 116, 174501 (2016)

    Article  Google Scholar 

  • S. Malaguti, A. Corli, S. Trillo, Control of gradient catastrophes developing from dark beams. Opt. Lett. 35, 4217–4219 (2010)

    Article  CAS  Google Scholar 

  • S. Malaguti, G. Bellanca, S. Trillo, Dispersive wave-breaking in coherently driven passive cavities. Opt. Lett. 39, 2475–2478 (2014)

    Article  Google Scholar 

  • G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, N. Picquét, Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2016)

    Article  CAS  Google Scholar 

  • S. Moiseev, R. Sagdeev, Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy 5, 43 (1963)

    Article  Google Scholar 

  • A. Moro, S. Trillo, Mechanism of wave breaking from a vacuum point in the defocusing nonlinear Schrödinger equation. Phys. Rev. E 89, 023202 (2014)

    Article  Google Scholar 

  • Y. Nakamura, H. Bailung, P.K. Shukla, Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602 (1999)

    Article  CAS  Google Scholar 

  • H. Nakatsuka, D. Grischkowsky, A.C. Balant, Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910 (1981)

    Article  CAS  Google Scholar 

  • A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Pique, G. Millot, Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers. Opt. Lett. 42, 3044 (2017)

    Article  CAS  Google Scholar 

  • M.V. Pavlov, Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging. Theor. Math. Phys. 71, 584 (1987)

    Article  Google Scholar 

  • D. Peregrine, Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)

    Article  Google Scholar 

  • M.L. Quiroga-Teixeiro, Raman-induced asymmetry of wave breaking in optical fibers. Phys. Scr. 51, 373 (1995)

    Article  CAS  Google Scholar 

  • S. Randoux, F. Gustave, P. Suret, G. El, Optical random Riemann waves in integrable turbulence. Phys. Rev. Lett. 118, 233901 (2017)

    Article  Google Scholar 

  • J.E. Rothenberg, Femtosecond optical shocks and wave breaking in fiber propagation. J. Opt. Soc. Am. B 6, 2392 (1989)

    Article  CAS  Google Scholar 

  • J.E. Rothenberg, D. Grischkowsky, Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys. Rev. Lett. 62, 531 (1989)

    Article  CAS  Google Scholar 

  • M. Salerno, B.A. Malomed, V.V. Konotop, Shock wave dynamics in a discrete nonlinear Schrödinger equation with internal losses. Phys. Rev. E 62, 8651 (2000)

    Article  CAS  Google Scholar 

  • R. Taylor, D. Baker, H. Ikezi, Observation of collisionless electrostatic shocks. Phys. Rev. Lett. 24, 206 (1970)

    Article  Google Scholar 

  • J.R. Thompson, R. Roy, Nonlinear dynamics of multiple four-wave mixing processes in a single-mode fiber. Phys. Rev. A 43, 4987–4996 (1991)

    Article  CAS  Google Scholar 

  • W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 467 (1985)

    Article  Google Scholar 

  • S. Trillo, A. Valiani, Hydrodynamic instability of multiple four-wave mixing. Opt. Lett. 35, 3967–3969 (2010)

    Article  Google Scholar 

  • S. Trillo, G. Deng, G. Biondini, M. Klein, G. Clauss, A. Chabchoub, M. Onorato, Experimental observation and theoretical description of multisoliton fission in shallow water. Phys. Rev. Lett. 117, 144102 (2016)

    Article  CAS  Google Scholar 

  • B. Varlot, S. Wabnitz, J. Fatome, G. Millot, C. Finot, Experimental generation of optical flaticon pulses. Opt. Lett. 38, 3899–3902 (2013)

    Article  Google Scholar 

  • S. Wabnitz, Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion. J. Opt. 15, 064002 (2013)

    Article  Google Scholar 

  • W. Wan, S. Jia, J.W. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2007)

    Article  CAS  Google Scholar 

  • K.E. Webb, Y.Q. Xu, M. Erkintalo, S.G. Murdoch, Generalized dispersive wave emission in nonlinear fiber optics. Opt. Lett. 38, 151–153 (2013)

    Article  CAS  Google Scholar 

  • B. Wetzel, D. Bongiovanni, M. Kues, Y. Hu, Z. Chen, J.M. Dudley, S. Trillo, S. Wabnitz, R. Morandotti, Experimental generation of Riemann waves in optics: a route to shock wave control. Phys. Rev. Lett. 117, 073902 (2016)

    Article  Google Scholar 

  • J.R. Whinnery, D.T. Miller, F. Dabby, Thermal convection and spherical aberration distortion of laser beams in low-loss liquids. IEEE J. Quantum Electron. QE-3, 382 (1967)

    Article  Google Scholar 

  • G. Whitham, Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238–261 (1965)

    Article  Google Scholar 

  • G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    Google Scholar 

  • G. Xu, D. Vocke, D. Faccio, J. Garnier, T. Roger, S. Trillo, A. Picozzi, From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat. Commun. 6, 8131 (2015)

    Article  CAS  Google Scholar 

  • G. Xu, A. Mussot, A. Kudlinski, S. Trillo, F. Copie, M. Conforti, Shock wave generation triggered by a weak background in optical fibers. Opt. Lett. 41, 2656 (2016)

    Article  CAS  Google Scholar 

  • G. Xu, M. Conforti, A. Kudlinski, A. Mussot, S. Trillo, Dispersive dam-break flow of a photon fluid. Phys. Rev. Lett. 118, 254101 (2017)

    Article  Google Scholar 

  • N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Trillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trillo, S., Conforti, M. (2019). Shock Waves. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_16

Download citation

Publish with us

Policies and ethics