Skip to main content

Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1042))

Abstract

Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.

Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.

Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.

This is a preview of subscription content, log in via an institution.

References

  • Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 22:2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas T, Shibata E, Park J, Jha S, Karnani N, Dutta A (2010) CRL4 Cdt2 regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell 40:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo J, Yan S, Michael WM (2016) Direct binding to replication protein a (RPA)-coated single-stranded DNA allows recruitment of the ATR activator TopBP1 to sites of DNA damage. J Biol Chem 291:13124–13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K, de Lima AF, Menard P, Mejlvang J, Rappsilber J, Groth A (2014) Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 16:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias EE, Walter JC (2005) Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi P, Foiani M, Kumar A (2015) ATM and ATR signaling at a glance. J Cell Sci 128:4255–4262

    Article  CAS  PubMed  Google Scholar 

  • Aylon Y, Kupiec M (2003) The checkpoint protein Rad24 of saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice. Mol Cell Biol 23(18):6585–6596

    Google Scholar 

  • Balakrishnan L, Brandt PD, Lindsey-Boltz LA, Sancar A, Bambara RA (2009) Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex. J Biol Chem 284:15158–15172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, Chen SM, Abraham RT, Wang XF (2001) ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411:969–974

    Article  CAS  PubMed  Google Scholar 

  • Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A (2003) Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci U S A 100:1633–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–1824

    Article  CAS  PubMed  Google Scholar 

  • Boehm EM, Washington MT (2016) R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. BioEssays 38:1117–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284:4041–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burtelow MA, Kaufmann SH, Karnitz LM (2000) Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage. J Biol Chem 275:26343–26348

    Article  CAS  PubMed  Google Scholar 

  • Burtelow MA, Roos-Mattjus PM, Rauen M, Babendure JR, Karnitz LM (2001) Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. J Biol Chem 276:25903–25909

    Article  CAS  PubMed  Google Scholar 

  • Bylund GO, Burgers PM (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25:5445–5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr AM, Lambert S (2013) Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 425:4733–4744

    Article  CAS  PubMed  Google Scholar 

  • Caspari T, Dahlen M, Kanter-Smoler G, Lindsay HD, Hofmann K, Papadimitriou K, Sunnerhagen P, Carr AM (2000) Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol Cell Biol 74:1254–1262

    Article  Google Scholar 

  • Chen MJ, Lin YT, Lieberman HB, Chen G, Lee EY (2001) ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation. J Biol Chem 276:16580–16586

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Paudyal SC, Chin RI, You Z (2013) PCNA promotes processive DNA end resection by Exo1. Nucleic Acids Res 41:9325–9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe KN, Moldovan GL (2017) Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell 65:380–392

    Article  CAS  PubMed  Google Scholar 

  • Chuang LC, Yew PR (2001) Regulation of nuclear transport and degradation of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1. J Biol Chem 276:1610–1617

    Article  CAS  PubMed  Google Scholar 

  • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000

    Article  CAS  PubMed  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, Elledge SJ (2011) A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332:1313–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crabbé L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A (2010) Analysis of replication profiles reveals key role of RFC–Ctf18 in yeast replication stress response. Nat Struct Mol Biol 17:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • De March M, Merino N, Barrera-Vilarmau S, Crehuet R, Onesti S, Blanco FJ, De Biasio A (2017) Structural basis of human PCNA sliding on DNA. Nat Commun 8:13935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21:1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dianov GL, Sleeth KM, Dianova II, Allinson SL (2003) Repair of abasic sites in DNA. Mutat Res 531:157–163

    Article  CAS  PubMed  Google Scholar 

  • Doré AS, Kilkenny ML, Rzechorzek NJ, Pearl LH (2009) Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex--implications for clamp loading and regulation. Mol Cell 34:735–745

    Article  PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274:22283–22288

    Article  CAS  PubMed  Google Scholar 

  • Duursma AM, Driscoll R, Elias JE, Cimprich KA (2013) A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell 50:116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmunds CE, Simpson LJ, Sale JE (2008) PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell 30:519–529

    Article  CAS  PubMed  Google Scholar 

  • Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol 1:e33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM 3rd (2004) XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32:2193–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W, D’Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase ε are viable but require the DNA damage checkpoint control. Mol Cell Biol 21:4495–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Rozas H, Clark D, Kolodner RD (2000) Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 26:375–378

    Article  CAS  PubMed  Google Scholar 

  • Fridman Y, Gur E, Fleishman SJ, Aharoni A (2013) Computational protein design suggests that human PCNA-partner interactions are not optimized for affinity. Proteins 81:341–348

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa R, Ohashi E, Hirota K, Tsurimoto T (2017) Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ε efficiently loads the PCNA sliding clamp. Nucleic Acids Res 45(8):4550–4563

    Article  PubMed  PubMed Central  Google Scholar 

  • Furuya K, Poitelea M, Guo L, Caspari T, Carr AM (2004) Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. Genes Dev 18:1154–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P, Haracska L (2012) Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 40:6049–6059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Rodríguez LJ, De Piccoli G, Marchesi V, Jones RC, Edmondson RD, Labib K (2015) A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Res 43:8830–8838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS (1997) The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 272:24522–24529

    Article  CAS  PubMed  Google Scholar 

  • Gembka A, Toueille M, Smirnova E, Poltz R, Ferrari E, Villani G, Hübscher U (2007) The checkpoint clamp, Rad9-Rad1-Hus1 complex, preferentially stimulates the activity of apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta in long patch base excision repair. Nucleic Acids Res 35:2596–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O’Donnell ME (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015a) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4:e04988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgescu R, Langston L, O’Donnell M (2015b) A proposal: evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair (Amst) 29:4–15

    Article  CAS  Google Scholar 

  • Goellner EM, Smith CE, Campbell CS, Hombauer H, Desai A, Putnam CD, Kolodner RD (2014) PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair. Mol Cell 55:291–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Kim JE, Leung CC, Glover JN, Chen J (2010) BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell 37:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer DA, Besley BD, Kennedy KB, Davey S (2003) hRad9 rapidly binds DNA containing double-strand breaks and is required for damage-dependent topoisomerase II beta binding protein 1 focus formation. Cancer Res 63:4829–4835

    CAS  PubMed  Google Scholar 

  • Griffith JD, Lindsey-Boltz LA, Sancar A (2002) Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J Biol Chem 277:15233–15236

    Article  CAS  PubMed  Google Scholar 

  • Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK (1999) Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153:607–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Tang TS, Bienko M, Parker JL, Bielen AB, Sonoda E, Takeda S, Ulrich HD, Dikic I, Friedberg EC (2006) Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26:8892–8900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna JS, Kroll ES, Lundblad V, Spencer FA (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 21:3144–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havens CG, Walter JC (2009) Docking of a specialized PIP box onto chromatin-bound PCNA creates a Degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 35:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henneke G, Koundrioukoff S, Hubscher U (2003) Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene 22:4301–4313

    Article  CAS  PubMed  Google Scholar 

  • Hochwagen A, Amon A (2006) Checking your breaks: surveillance mechanisms of meiotic recombination. Curr Biol 16:R217–R228

    Article  CAS  PubMed  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hofmann JFX, Beach D (1994) cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 13:425–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D’Andrea AD (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8:339–347

    CAS  PubMed  Google Scholar 

  • Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Indiani C, O’Donnell M (2006) The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 7:751–761

    Article  CAS  PubMed  Google Scholar 

  • Indiani C, McInerney P, Georgescu R, Goodman MF, O′Donnell M. (2005) A sliding-clamp tool belt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell 19:805–815

    Article  CAS  PubMed  Google Scholar 

  • Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Gali VK, Takahashi TS, Kubota T (2016) PCNA retention on DNA into G2/M phase causes genome instability in cells lacking Elg1. Cell Rep 16:684–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126:297–308

    Article  CAS  PubMed  Google Scholar 

  • Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M, Kunkel TA, Modrich P (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282:37181–37190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Wang TS (2003) Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Furuya K, Paderi F, Carr AM, Wang TS (2007) Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice. Nat Cell Biol 9:691–697

    Article  CAS  PubMed  Google Scholar 

  • Karras GI, Fumasoni M, Sienski G, Vanoli F, Branzei D, Jentsch S (2013) Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 49:536–546

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kostrub CF, Enoch T (2001) Structure-function analysis of fission yeast Hus1-Rad1-Rad9 checkpoint complex. Mol Biol Cell 12:3744–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasoe Y, Tsurimoto T, Nakagawa T, Masukata H, Takahashi TS (2016) MutSa maintains the mismatch repair capability by inhibiting PCNA unloading. Elife 5:e15155

    Article  PubMed  PubMed Central  Google Scholar 

  • Kedar PS, Kim SJ, Robertson A, Hou E, Prasad R, Horton JK, Wilson SH (2002) Direct interaction between mammalian DNA polymerase beta and proliferating cell nuclear antigen. J Biol Chem 277:31115–311123

    Article  CAS  PubMed  Google Scholar 

  • Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2012) Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 10:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Lee H (2008) Lys-110 is essential for targeting PCNA to replication and repair foci, and the K110A mutant activates apoptosis. Biol Cell 100:675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, MacNeill SA (2003) Genome stability: a new member of the RFC family. Curr Biol 13:R873–R875

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Michael WM (2008) Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. Elegans. Mol Cell 32:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ST, Lim DS, Canman CE, Kastan MB (1999) Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274:37538–37543

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Starostina NG, Kipreos ET (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 22:2507–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleczkowska HE, Marra G, Lettieri T, Jiricny J (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 15:724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Hirano A, Kumano T, Xiang SL, Mihara K, Haseda Y, Matsui O, Shimizu H, Yamamoto K (2004) Critical role for chicken Rad17 and Rad9 in the cellular response to DNA damage and stalled DNA replication. Genes Cells 9:291–303

    Article  CAS  PubMed  Google Scholar 

  • Kochaniak AB, Habuchi S, Loparo JJ, Chang DJ, Cimprich KA, Walter JC, van Oijen AM (2009) Proliferating cell nuclear antigen uses two distinct modes to move along DNA. J Biol Chem 284:17700–117710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Matsumoto K, Sugimoto K (1999) Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Mol Cell Biol 19:1136–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Wakayama T, Naiki T, Matsumoto K, Sugimoto K (2001) Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294:867–870

    Article  CAS  PubMed  Google Scholar 

  • Koundrioukoff S, Jónsson ZO, Hasan S, de Jong RN, van der Vliet PC, Hottiger MO, Hübscher U (2000) A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. J Biol Chem 275:22882–22887

    Article  CAS  PubMed  Google Scholar 

  • Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5:a012583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubota T, Nishimura K, Kanemaki MT, Donaldson AD (2013a) The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 50:273–280

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Myung K, Donaldson AD (2013b) Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 12:2570–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota T, Katou Y, Nakato R, Shirahige K, Donaldson AD (2015) Replication-coupled PCNA unloading by the Elg1 complex occurs genome-wide and requires Okazaki fragment ligation. Cell Rep 12:774–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124:943–955

    Article  CAS  PubMed  Google Scholar 

  • Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Dunphy WG (2013) The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol Biol Cell 24:1343–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG (2003a) Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell 11:329–340

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282:28036–28044

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Fu H, Aladjem MI, Myung K (2013) ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J Cell Biol 200:31–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, Shirahige K, Uhlmann F (2006) Establishment of sister chromatid cohesion at the S. Cerevisiae replication fork. Mol Cell 23:787–799

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Pearlman AH, Hsieh P (2016) DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 38:94–101

    Article  CAS  Google Scholar 

  • Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A (2001) Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci U S A 98:11236–11241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey-Boltz LA, Kemp MG, Capp C, Sancar A (2015) RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Cell Cycle 14:99–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Longhese MP, Paciotti V, Fraschini R, Zaccarini R, Plevani P, Lucchini G (1997) The novel DNA damage checkpoint protein ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast. EMBO J 16:5216–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López de Saro FJ, O’Donnell M (2001) Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc Natl Acad Sci U S A 98:8376–8380

    Article  PubMed  PubMed Central  Google Scholar 

  • Lydall D, Nikolsky Y, Bishop DK, Weinert T (1996) A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840–843

    Article  CAS  PubMed  Google Scholar 

  • Maga G, Hübscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Gibbs-Seymour I, Bekker-Jensen S (2013) Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 14:269–282

    Article  CAS  PubMed  Google Scholar 

  • Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227–260

    Article  CAS  PubMed  Google Scholar 

  • Majka J, Binz SK, Wold MS, Burgers PM (2006) Replication protein a directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J Biol Chem 281:27855–27861

    Article  CAS  PubMed  Google Scholar 

  • Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5:a012716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsischky GT, Filosi N, Kane MF, Kolodner R (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10:407–420

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Piao J, Kamiya K (2010) DNA replication-coupled PCNA mono-ubiquitination and polymerase switching in a human in vitro system. J Mol Biol 396:487–500

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Google Scholar 

  • Mayer ML, Gygi SP, Aebersold R, Hieter P (2001) Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. Cerevisiae. Mol Cell 7:959–970

    Article  CAS  PubMed  Google Scholar 

  • McInerney P, Johnson A, Katz F, O’Donnell M (2007) Characterization of a triple DNA polymerase replisome. Mol Cell 27:527–538

    Article  CAS  PubMed  Google Scholar 

  • Melo JA, Cohen J, Toczyski DP (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15:2809–2821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle CJ, Karnitz LM, Henry-Sánchez JT, Chen J (2003) Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment. J Biol Chem 278:30051–30056

    Article  CAS  PubMed  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23:723–732

    Article  CAS  PubMed  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  CAS  PubMed  Google Scholar 

  • Moldovan GL, Dejsuphong D, Petalcorin MI, Hofmann K, Takeda S, Boulton SJ, D’Andrea AD (2012) Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol Cell 45:75–86

    Article  CAS  PubMed  Google Scholar 

  • Mordes DA, Glick GG, Zhao R, Cortez D (2008) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22:1478–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci U S A 102:8905–8909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami T, Takano R, Takeo S, Taniguchi R, Ogawa K, Ohashi E, Tsurimoto T (2010) Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase ε is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8. J Biol Chem 285:34608–34615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K (2001) Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol 21:5838–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navadgi-Patil VM, Burgers PM (2008) Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J Biol Chem 283:35853–35859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navadgi-Patil VM, Burgers PM (2009) The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol Cell 36:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino K, Inoue E, Takada S, Abe T, Akita M, Yoshimura A, Tada S, Kobayashi M, Yamamoto K, Seki M, Enomoto T (2008) A novel role for Rad17 in homologous recombination. Genes Genet Syst 83:427–431

    Article  CAS  PubMed  Google Scholar 

  • Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25:1126–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T (2008) CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 283:29045–29052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell M, Li H (2016) The eukaryotic replisome goes under the microscope. Curr Biol 26:R247–R256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohashi E, Takeishi Y, Ueda S, Tsurimoto T (2014) Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair (Amst) 21:1–11

    Article  CAS  Google Scholar 

  • O’Neill T, Dwyer AJ, Ziv Y, Chan DW, Lees-Miller SP, Abraham RH, Lai JH, Hill D, Shiloh Y, Cantley LC, Rathbun GA (2000) Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem 275:22719–22727

    Article  PubMed  Google Scholar 

  • Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN, Roti Roti JL, Lieberman HB, Pandita TK (2006) Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol 26:1850–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Jeong MS, Han CW, Yu HS, Jang SB (2016) Structural and functional insight into proliferating cell nuclear antigen. J Microbiol Biotechnol 26:637–647

    Article  CAS  PubMed  Google Scholar 

  • Parnas O, Zipin-Roitman A, Pfander B, Liefshitz B, Mazor Y, Ben-Aroya S, Jentsch S, Kupiec M (2010) Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 29:2611–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulovich AG, Armour CD, Hartwell LH (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150:75–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A 107:16066–16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prelich G, Stillman B (1988) Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 53:117–126

    Article  CAS  PubMed  Google Scholar 

  • Prelich G, Kostura M, Marshak DR, Mathews MB, Stillman B (1987) The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 326:471–475

    Article  CAS  PubMed  Google Scholar 

  • Prindle MJ, Loeb LA (2012) DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 53:666–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puddu F, Granata M, Di Nola L, Balestrini A, Piergiovanni G, Lazzaro F, Giannattasio M, Plevani P, Muzi-Falconi M (2008) Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Mol Cell Biol 28:4782–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pursell ZF, Isoz I, Lundström EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappas M, Oliver AW, Pearl LH (2011) Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res 39:313–324

    Article  CAS  PubMed  Google Scholar 

  • Roos-Mattjus P, Vroman BT, Burtelow MA, Rauen M, Eapen AK, Karnitz LM (2002) Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event. J Biol Chem 277:43809–43812

    Article  CAS  PubMed  Google Scholar 

  • Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S, Lieberman HB, Karnitz LM (2003) Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 278:24428–24437

    Article  CAS  PubMed  Google Scholar 

  • Rousseau D, Cannella D, Boulaire J, Fitzgerald P, Fotedar A, Fotedar R (1999) Growth inhibition by CDK-cyclin and PCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene 18:4313–4325

    Article  CAS  PubMed  Google Scholar 

  • Rudra S, Skibbens RV (2013) Cohesin codes - interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbioneda S, Minesinger BK, Giannattasio M, Plevani P, Muzi-Falconi M, Jinks-Robertson S (2005) The 9-1-1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polzeta-dependent mutagenesis in Saccharomyces cerevisiae. J Biol Chem 280:38657–38665

    Article  CAS  PubMed  Google Scholar 

  • Saberi A, Nakahara M, Sale JE, Kikuchi K, Arakawa H, Buerstedde JM, Yamamoto K, Takeda S, Sonoda E (2008) The 9-1-1 DNA clamp is required for immunoglobulin gene conversion. Mol Cell Biol 28:6113–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  • Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585

    Article  CAS  PubMed  Google Scholar 

  • Shibutani ST, de la Cruz AF, Tran V, Turbyfill WJ 3rd, Reis T, Edgar BA, Duronio RJ (2008) Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev Cell 15:890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara M, Sakai K, Ogawa T, Shinohara A (2003) The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 164:855–865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiomi Y, Nishitani H (2013) Alternative replication factor C protein, Elg1, maintains chromosome stability by regulating PCNA levels on chromatin. Genes Cells 18:946–959

    Article  CAS  PubMed  Google Scholar 

  • Shiomi Y, Nishitani H (2017) Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication. Genes (Basel) 8., pii:E52

    Article  CAS  Google Scholar 

  • Shiomi Y, Shinozaki A, Nakada D, Sugimoto K, Usukura J, Obuse C, Tsurimoto T (2002) Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells 7:861–868

    Article  CAS  PubMed  Google Scholar 

  • Shiomi Y, Shinozaki A, Sugimoto K, Usukura J, Obuse C, Tsurimoto T (2004) The reconstituted human Chl12-RFC complex functions as a second PCNA loader. Genes Cells 9:279–290

    Article  CAS  PubMed  Google Scholar 

  • Shiomi Y, Hayashi A, Ishii T, Shinmyozu K, Nakayama J, Sugasawa K, Nishitani H (2012) Two different replication factor C proteins, Ctf18 and RFC1, separately control PCNA-CRL4Cdt2-mediated Cdt1 proteolysis during S phase and following UV irradiation. Mol Cell Biol 32:2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirbu BM, McDonald WH, Dungrawala H, Badu-Nkansah A, Kavanaugh GM, Chen Y, Tabb DL, Cortez D (2013) Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J Biol Chem 288:31458–31467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skibbens RV (2009) Establishment of sister chromatid cohesion. Curr Biol 19:R1126–R1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LA, Makarova AV, Samson L, Thiesen KE, Dhar A, Bessho T (2012) Bypass of a psoralen DNA interstrand cross-link by DNA polymerases β, ι, and κ in vitro. Biochemistry 51:8931–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Onge RP, Udell CM, Casselman R, Davey S (1999) The human G2 checkpoint control protein hRAD9 is a nuclear phosphoprotein that forms complexes with hRAD1 and hHUS1. Mol Biol Cell 10:1985–1995

    Article  CAS  PubMed  Google Scholar 

  • St Onge RP, Besley BD, Park M, Casselman R, Davey S (2001) DNA damage-dependent and -independent phosphorylation of the hRad9 checkpoint protein. J Biol Chem 276:41898–41905

    Article  CAS  PubMed  Google Scholar 

  • St Onge RP, Besley BD, Pelley JL, Davey S (2003) A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 278:26620–26628

    Article  CAS  PubMed  Google Scholar 

  • Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    Article  CAS  PubMed  Google Scholar 

  • Subramanian VV, Hochwagen A (2014) The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 6:a016675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Q, Tsurimoto T, Juillard F, Li L, Li S, De León VE, Chen S, Kaye K (2014) Kaposi’s sarcoma-associated herpesvirus LANA recruits the DNA polymerase clamp loader to mediate efficient replication and virus persistence. Proc Natl Acad Sci U S A 111:11816–11821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeishi Y, Ohashi E, Ogawa K, Masai H, Obuse C, Tsurimoto T (2010) Casein kinase 2-dependent phosphorylation of human Rad9 mediates the interaction between human Rad9-Hus1-Rad1 complex and TopBP1. Genes Cells 15:761–771

    Article  CAS  PubMed  Google Scholar 

  • Takeishi Y, Iwaya-Omi R, Ohashi E, Tsurimoto T (2015) Intramolecular binding of the Rad9 C terminus in the checkpoint clamp Rad9-Hus1-Rad1 is closely linked with its DNA binding. J Biol Chem 290:19923–19932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terai K, Abbas T, Jazaeri AA, Dutta A (2010) CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol Cell 37:143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terret ME, Sherwood R, Rahman S, Qin J, Jallepalli PV (2009) Cohesin acetylation speeds the replication fork. Nature 462:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson DA, Stahl FW (1999) Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153:621–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinker RL, Kassavetis GA, Geiduschek EP (1994) Detecting the ability of viral, bacterial and eukaryotic proteins to track along DNA. EMBO J 13:5330–5337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurimoto T (1999) PCNA binding proteins. Front Biosci 4:D849–D858

    Article  CAS  PubMed  Google Scholar 

  • Tsurimoto T, Stillman B (1989) Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol 9:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda S, Takeishi Y, Ohashi E, Tsurimoto T (2012) Two serine phosphorylation sites in the C-terminus of Rad9 are critical for 9-1-1 binding to TopBP1 and activation of the DNA damage checkpoint response in HeLa cells. Genes Cells 17:807–816

    Article  CAS  PubMed  Google Scholar 

  • Ulrich HD (2013) New insights into replication clamp unloading. J Mol Biol 425:4727–4732

    Article  CAS  PubMed  Google Scholar 

  • Ulrich HD, Jentsch S (2000) Two RING finger proteins mediate cooperation between ubiquitinconjugating enzymes in DNA repair. EMBO J 19:3388–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkmer E, Karnitz LM (1999) Human homologs of Schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex. J Biol Chem 274:567–570

    Article  CAS  PubMed  Google Scholar 

  • Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751

    Article  CAS  PubMed  Google Scholar 

  • Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zou L, Zheng H, Wei Q, Elledge SJ, Li L (2003) Genomic instability and endoreduplication triggered by RAD17 deletion. Genes Dev 17:965–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hu B, Weiss RS, Wang Y (2006) The effect of Hus1 on ionizing radiation sensitivity is associated with homologous recombination repair but is independent of nonhomologous end-joining. Oncogene 25:1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Warbrick E, Lane DP, Glover DM, Cox LS (1995) A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21waf1 and the proliferating cell nuclear antigen. Curr Biol 5:275–282

    Article  CAS  PubMed  Google Scholar 

  • Weiss RS, Matsuoka S, Elledge SJ, Leder P (2002) Hus1 acts upstream of chk1 in a mammalian DNA damage response pathway. Curr Biol 12:73–77

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shell SM, Zou Y (2005) Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein a in human cells. Oncogene 24:4728–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Vaithiyalingam S, Glick GG, Mordes DA, Chazin WJ, Cortez D (2008) The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Mol Cell Biol 28:7345–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Michael WM (2009) TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. J Cell Biol 184:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao NY, O’Donnell M (2012) The RFC clamp loader: structure and function. Subcell Biochem 62:259–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao N, Turner J, Kelman Z, Stukenberg PT, Dean F, Shechter D, Pan ZQ, Hurwitz J, O’Donnell M (1996) Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. Coli and T4 replicases. Genes Cells 1:101–113

    Article  CAS  PubMed  Google Scholar 

  • You Z, Kong L, Newport J (2002) The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J Biol Chem 277:27088–27093

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Gan H, Han J, Zhou ZX, Jia S, Chabes A, Farrugia G, Ordog T, Zhang Z (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir L, Zaretsky M, Fridman Y, Ner-Gaon H, Rubin E, Aharoni A (2012) Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility. Proc Natl Acad Sci U S A 109:E406–E414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xiong Y, Beach D (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4:897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Shibahara K, Stillman B (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408:221–225

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Cortez D, Elledge SJ (2002) Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16:198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100:13827–11383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. T. S. Takahashi (Kyushu University) for the comments on the manuscript. We apologize to those colleagues whose work is not cited because of space restrictions. This work is supported by Grants-in-aid for Scientific Research (KAKENHI) 25131714, 25440011, 26114714, and 16H04743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Tsurimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohashi, E., Tsurimoto, T. (2017). Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. In: Masai, H., Foiani, M. (eds) DNA Replication. Advances in Experimental Medicine and Biology, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-10-6955-0_7

Download citation

Publish with us

Policies and ethics