Skip to main content

An Insight into Genetically Modified Crop-Mycorrhizal Symbiosis

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Genetically modified crops (GMCs) are currently widely used in agricultural biotechnology where plants are engineered to express characters that defend them against different abiotic and biotic stresses. Many studies have revealed that GMCs have sequential benefits for the environment, human well-being, and farmers’ economic growth, especially in densely populated countries. Several studies revealed that GMCs can significantly affect the soil microorganisms even their symbiosis with plants. Of these, arbuscular mycorrhizal fungi (AMF) are a good example for the widespread symbiotic relationship as they are associated with maximum crop species and provide several benefits in various agroecosystems. The AMF association can show an imperative functional character in the acquisition of nutrients by the crop plants. In this case, the associated response of transgenic crops and soil microorganisms in relation with AMF may be positive, negative, and neutral. Moreover, GMCs may influence AMF either directly and indirectly through modifications in root exudation or through discrepancies in the variety and action of soil microorganisms. Although Bacillus thuringiensis (Bt) corn is extensively cultivated, a limited number of studies have investigated the interaction of altered lines of Bt corn with symbiotic AMF. These studies pointed out that AMF colonization of genetically modified Bt corn lines differs with quantity and kind of engineered traits. Many research studies reported that GMCs do not affect AMF and failed to find any variations between non-Bt and Bt crops. In contrast, some studies reported a substantial decrease in AMF colonization levels. Therefore, we gathered the information available on the influence of GMCs on AMF in this chapter and consider that it will explore interesting insights on mycorrhizal symbioses in the modern agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali A, Wani TA, Wani IA, Masoodi FA (2016) Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. J Saudi Soc Agri Sci 15:75–82

    Google Scholar 

  • Anderson C (2001) The GM food potential. Strategic Analysis Paper. Published by Future Directions International Pty. Ltd. Australia

    Google Scholar 

  • Andreote FD, Mendes R, Dini-Andreote F, Rossetto PB, Labate CA, Pizzirani-Kleiner AA, van Elsas JD, Azevedo JL, AraĂşjo WL (2008) Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development. Antonie Van Leeuwenhoek 93:415–424

    Article  CAS  PubMed  Google Scholar 

  • Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate CA, Azevedo JL, AraĂşjo WL (2009) Culture-independent assessment of Rhizobiales-related Alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microbial Ecol 57:82–93

    Article  Google Scholar 

  • Azcon R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685

    Article  CAS  Google Scholar 

  • Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, Caliskan ME, Hatipoglu R, Ozcan S, Ozkan H (2015) Insect-resistant transgenic crops: retrospect and challenges. Turk J Agri For 39:531–548

    Article  Google Scholar 

  • Baumgarte S, Tebbe C (2005) Field studies on the environmental fate of the Cry1Ab Bt toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol 14:2539–2551

    Article  CAS  PubMed  Google Scholar 

  • Beckie HJ, Hall LM (2014) Genetically-modified herbicide resistant (GMHR) crops a two-edged sword? An Americas perspective on development and effect on weed management. Crop Protect 66:40–45

    Article  Google Scholar 

  • Blackwood CB, Buyer JS (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual 33:832–836

    Article  CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700

    Google Scholar 

  • Carpenter JE (2011) Impacts of GM crops on biodiversity. GM Crops 2:1–17

    Article  Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouseg AMR, Karenlamph S, Koki EJ, Leguayi J-J, Lehesrantah S, Noteborni HPJM, Pedersenk J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    Article  CAS  PubMed  Google Scholar 

  • Cheeke TE, Pace BA, Rosenstiel TN, Cruzan MB (2011) The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms. FEMS Microbiol Ecol 75:304–312

    Article  CAS  PubMed  Google Scholar 

  • Cheeke TE, Coleman DC, Wall DH (2012a) Microbial ecology in sustainable agroecosystems. CRC Press. Taylor & Francis Group, UK

    Google Scholar 

  • Cheeke TE, Rosenstiel TN, Cruzan MB (2012b) Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot 99:700–707

    Article  PubMed  Google Scholar 

  • Cheeke TE, Cruzan MB, Rosenstiel TN (2013) Field evaluation of arbuscular mycorrhizal fungal colonization in Bacillus thuringiensis toxin-expressing (Bt) and non-Bt maize. Appl Environ Microbiol 79:4078–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Chun Y, Kim H-J, Park K, Jeong S-C, Lee B, Back K, Kim H, Kim C-G (2012) Two-year field study shows little evidence that PPO transgenic rice affects the structure of soil microbial communities. Biol Fertil Soils 48(4):453–461

    Article  Google Scholar 

  • Cortet J, Andersen MN, Caul S, Griffiths B, Joffre R, Lacroix B, Sausse C, Thompson J, Krogh PH (2006) Decomposition processes under Bt (Bacillus thuringiensis) maize: results of a multi-site experiment. Soil Biol Biochem 38:195–199

    Article  CAS  Google Scholar 

  • Cotton TEA, Fitter AH, Miller RM, Dumbrell AJ, Helgason T (2015) Fungi in the future: inter-annual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytol 205:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol 39:915–923

    Article  Google Scholar 

  • Crecchio C, Stotzky G (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biol Biochem 30:463–470

    Article  CAS  Google Scholar 

  • de Souza Vieira PD, de Souza Motta CM, Lima D, Torres JB, Quecine MC, Azevedo JL, de Oliveira NT (2011) Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology 2:91–97

    Article  Google Scholar 

  • de Vaufleury A, Kramarz PE, Binet P, Cortet J, Caul S, Andersen MN, Plumey E, Coeurdassier M, Krogh PH (2007) Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia 51:185–194

    Article  CAS  Google Scholar 

  • Dinel H, Schnitzer M, Saharinen M, Meloche F, Pare T, Dumontet S, Lemee L, Ambles A (2003) Extractable soil lipids and microbial activity as affected by Bt and non-Bt maize grown on a silty clay loam soil. J Environ Sci Health 38:211–219

    Article  CAS  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL (1995) Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124

    Article  Google Scholar 

  • Donegan KK, Schaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var tenebrionis endotoxin. Transgenic Res 5:25–35

    Article  CAS  Google Scholar 

  • Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Ecol 36:920–936

    Article  Google Scholar 

  • Dumas-Gaudot E, Asselin A, Gianinazzi-Pearson V, Gollotte A, Gianinazzi S (1994) Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci 88:27–37

    Article  Google Scholar 

  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1–9

    Article  CAS  Google Scholar 

  • Edwards CA, Madden RLP, Miller RH, House G (1990) Sustainable agricultural systems. Soil and Water Conservation Society, Iowa

    Google Scholar 

  • Escher N, Kach B, Nentwig W (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcellio scaber (Crustacea: Isopoda). Basic Appl Entomol 1:161–169

    Article  Google Scholar 

  • Ferreira L, Molina J, Brasil C, Andrade G (2003) Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganisms. Plant Soil 256:161–168

    Article  CAS  Google Scholar 

  • FlieĂźbach A, Messmer M, Nietlispach B, Infante V, Mader P (2012) Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertil Soils 48:315–324

    Article  CAS  Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082

    Article  CAS  Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • GeneWatch (2016) GM crops: current situation–Worldwide commercial growing. http://www.genewatch.org/sub-532326. Accessed on 10 Oct, 2016

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Riv Biol 98:393–417

    PubMed  Google Scholar 

  • Gips (1987) Breaking the pesticide habit: alternative to twelve hazardous pesticides. International Alliance for Sustainable Agriculture, Minneapolis

    Google Scholar 

  • Girlanda M, Bianciotto V, Cappellazzo GA, Casieri L, Bergero R, Martino E, Luppi AM, Perotto S (2008) Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. FEMS Microbiol Lett 288:9–18

    Article  CAS  PubMed  Google Scholar 

  • Glinka C, Hawkes CV (2014) Environmental controls on fungal community composition and abundance over 3 years in native and degraded shrub lands. Microbial Ecol 68:807–817

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, MendoncaHagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agri Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A, Lottmann J, Berg G, Smalla K (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58:404–413

    Article  PubMed  CAS  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A, Sausse C, Lacroix B, Krogh PH (2005) A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CryIAb toxin. Plant Soil 275:135–146

    Article  CAS  Google Scholar 

  • Griffiths BS, Heckmann LH, Caul S, Thompson J, Scrimgeour C, Krogh PH (2007) Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Plant Biotechnol 5:60–68

    Article  CAS  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Hackett CA, Cortet J, Pernin C, Krogh PH (2008) Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils. Plant Soil 308:93–103

    Article  CAS  Google Scholar 

  • Grigera MS, Drijber RA, Wienhold BJ (2007) Redistribution of crop residues during row cultivation creates a biologically enhanced environment for soil microorganisms. Soil Till Res 94:550–554

    Article  Google Scholar 

  • Gschwendtner S, EsperschĂĽtz J, Buegger F, Reichmann M, MĂĽller M, Munch JC, Schloter M (2010) Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiol Ecol 76:564–575

    Article  CAS  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MA, MNV P (eds) Salt stress in plants: signalling, omics and adaptations. Springer Science+Business Media, New York, pp 301–354

    Chapter  Google Scholar 

  • Hannula SE, de Boer W, van Veen JA (2010) In situ dynamics of soil fungal communities under different genotypes of potato, including a genetically modified cultivar. Soil Biol Biochem 42:2211–2223

    Article  CAS  Google Scholar 

  • Hannula SE, de Boer W, van Veen JA (2012) A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS One 7:e33819. doi:10.1371/journal.pone.0033819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannula SE, de Boer W, Baldrian P, Van Veen JA (2013) Effects of genetically modified amylopectin-accumulating potato in decomposer processes and fungal diversity in litter and soil. Soil Biol Biochem 58:88–98

    Article  CAS  Google Scholar 

  • Hannula SE, de Boer W, van Veen JA (2014) Do genetic modifications in crops affect soil fungi? A review. Biol Fertil Soils 50:433–446

    Article  CAS  Google Scholar 

  • Hart MM, Powell JR, Gulden RH, Dunfield KE, Pauls KP, Swanton CJ, Klironomos JN, Antunes PM, Koch AM, Trevors JT (2009) Separating the effect of crop from herbicide on soil microbial communities in glyphosate-resistant corn. Pedobiologia 52:253–262

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Henault C, English LC, Halpin C, Andreux F, Hopkins DW (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. FEMS Microbiol Lett 263:68–75

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosome location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897

    Article  Google Scholar 

  • Ho MW, Ryan A, Cummins J (1999) Cauliflower mosaic viral promoter â€“ a recipe for disaster? Microb Ecol Health Dis 11:194–197

    Article  CAS  Google Scholar 

  • Hönemann L, Nentwig W (2009) Are survival and reproduction of Enchytraeus albidus (Annelida: Enchytraeidae) at risk by feeding on Bt-maize litter? Euro J Soil Biol 45:351–355

    Article  CAS  Google Scholar 

  • Hopkins DW, Gregorich EG (2003) Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. Eur J Soil Sci 54:793–800

    Article  Google Scholar 

  • Hoss S, Nguyen HT, Menzel R, Pagel-Wieder S, MiethlingGraf R, Tebbe CC, Jehle JA, Traunspurger W (2011) Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein. Sci Total Environ 409:2674–2684

    Article  CAS  PubMed  Google Scholar 

  • Icoz I, Stotzky G (2008) Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Res 17:609–620

    Article  CAS  PubMed  Google Scholar 

  • Icoz I, Saxena D, Andow D, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. J Environ Qual 37:647–662

    Article  CAS  PubMed  Google Scholar 

  • Isobe K, Sugimura H, Maeshima T, Ishii R (2008) Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan: 2. Spore density of arbuscular mycorrhizal fungi and infection ratio in soybean and maize fields. Plant Produc Sci 11:171–177

    Article  Google Scholar 

  • James C (2012) Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief No. 44. ISAAA, Ithaca, NY

    Google Scholar 

  • James C (2013) Global status of commercialized biotech/GM crops: 2013. ISAAA Brief No. 46. ISAAA, Ithaca, NY

    Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Jung HG, Sheaffer CC (2004) Lignin concentration of whole plants and stems of Bt corn hybrids. J Animal Sci 82:250–250

    Article  Google Scholar 

  • Kabir Z, OHalloran IP, Fyles JW, Hamel C (1998) Dynamics of mycorrhizal symbiosis of corn (Zea mays L.): effects of host physiology, tillage practice and fertilization on spatial distribution of extra-radical mycorrhizal hyphae in the field. Agric Ecosyst Environ 68:151–163

    Article  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364

    Article  Google Scholar 

  • Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660

    Article  CAS  PubMed  Google Scholar 

  • Khan MQ, Abbasi MW, Zaki MJ, Khan SA (2010) Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pak J Bot 42:2903–2910

    Google Scholar 

  • KlĂĽmper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9:e111629. doi:10.1371/journal.pone.0111629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knox OGG, Nehl DB, Mor T, Roberts GN, Gupta VVSR (2008) Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots. Field Crops Res 109:57–60

    Article  Google Scholar 

  • Koskella J, Stotzky G (2002) Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro. Can J Microbiol 48:262–267

    Article  CAS  PubMed  Google Scholar 

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31:153–161

    Article  CAS  Google Scholar 

  • Kuramae EE, Verbruggen E, Hillekens R, de Hollander M, Roling WFM, van der Heijden MGA, Kowalchuk GA (2013) Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PloS ONE 8:e69973. doi:10.1371/journal.pone. 0069973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang A, Abdel-Kader K, Arndt M, Bauchhenss J, Beck R, Benker U, Hermann A, Mautz D, Zellner M, Pommer G (2006) Monitoring the environmental impact of Bt maize: a research project of the Bavarian State Ministry for Health, Environment and Consumer Protection, and the Bavarian State Research Center for Agriculture. Mitt Biol Bundes Land Forst Berlin-Dahlem 403:136–139

    Google Scholar 

  • Lawhorn CN, Neher DA, Dively GP (2009) Impact of coleopteran targeting toxin (Cry3Bb1) of Bt corn on microbially mediated decomposition. Appl Soil Ecol 41:364–368

    Article  Google Scholar 

  • Lee S-H, Kim C-G, Kang H (2011) Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Microb Ecol 61:646–659

    Article  PubMed  Google Scholar 

  • Lehman RM, Osborne SL, Rosentrater KA (2008) No differences in decomposition rates observed between Bacillus thuringiensis and non-Bacillus thuringiensis corn residue incubated in the field. Agron J 100:163–168

    Google Scholar 

  • Li SL, Zhao SJ, Zhao LZ, Li SL, Zhao SJ, Zhao LZ (1997) Variation in the responses of Alfalfa clone and cultivars of eggplant and cucumber and control of diseases. Acta Phytophylact Sin 24:117–120

    Google Scholar 

  • Li X, Liu B, Cui J, Liu D, Ding S, Gilna B, Luo J, Fang Z, Cao W, Han Z (2011) No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant Soil 339:247–257

    Google Scholar 

  • Liang J, Sun S, Ji J, Wu H, Meng F, Zhang M, Zheng X, Wu C, Zhang Z (2014) Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar. PLoS One 9:e103343. doi:10.1371/journal.pone.0103343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang J, Meng F, Sun S, Wu C, Wu H, Zhang M, Zhang H, Zheng X, Song X, Zhang Z (2015) Community structure of arbuscular mycorrhizal fungi in rhizospheric soil of a transgenic high-methionine soybean and a near isogenic variety. PLoS One 10:e0145001. doi:10.1371/journal.pone.0145001

  • Lilley AK, Bailey MJ, Cartwright C, Turner SL, Hirsch PR (2006) Life in earth: the impact of GM plants on soil ecology? Tren Biotech 24:9–14

    Article  CAS  Google Scholar 

  • Liu WK (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19:229–238

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zeng Q, Yan FM, Xu HG, Xu CR (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13

    Article  CAS  Google Scholar 

  • Liu W, Hao Lu H, Wu W, Kun Wei Q, Xu Chen Y, Thies JE (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40:475–486

    Google Scholar 

  • Liu B, Wang L, Zeng Q, Meng J, Hu W, Li X, Zhou K, Xue K, Liu D, Zheng Y (2009) Assessing effects of transgenic Cry1Ac cotton on the earthworm Eisenia fetida. Soil Biol Biochem 41:1841–1846

    Google Scholar 

  • Lu H, Wu W, Chen Y, Wang H, Devare M, Thies JE (2010) Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J Soils Sed 10:1598–1605

    Article  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385

    Article  CAS  Google Scholar 

  • Manachini B, Landi S, Fiore MC, Festa M, Arpaia S (2004) First investigations on the effects of Bt-transgenic Brassica napus L. on the trophic structure of the nematofauna. IOBC/WPRS Bull 27:103–108

    Google Scholar 

  • Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68:2562–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoero F, Moschini M, Rossi F, Prandini A, Pietri A (1999) Nutritive value, mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (Cry1A9b) grown in northern Italy. Maydica 44:205–209

    Google Scholar 

  • Medina MJH, Gagnon H, Piche Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998

    Article  CAS  Google Scholar 

  • Mercer KL, Wainwright JD (2008) Gene flow from transgenic maize to landraces in Mexico: an analysis. Agri Ecosyst Environ 123:109–115

    Article  CAS  Google Scholar 

  • Meyer JB, Song-Wilson Y, Foetzki A, LuginbĂĽhl C, Winzeler M, KneubĂĽhler Y, Matasci C, Mascher-Frutschi F, Kalinina O, Boller T, Keel C, Maurhöfer M (2013) Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi? PLoS One 8:e53825. doi:10.1371/journal.pone.0053825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of vassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194

    Google Scholar 

  • Motavalli PP, Kremer RJ, Fang M, Means NE (2004) Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. J Environ Qual 33:816–824

    Article  CAS  PubMed  Google Scholar 

  • Muchaonyerwa P, Waladde S, Nyamugafata P, Mpepereki S, Ristori GG (2004) Persistence and impact on microorganisms of Bacillus thuringiensis proteins in some Zimbabwean soils. Plant Soil 266:41–46

    Article  CAS  Google Scholar 

  • Mungai NW, Motavalli PP, Nelson KA, Kremer RJ (2005) Differences in yields, residue composition and N mineralization dynamics of Bt- and non-Bt-maize. Nutri Cycl Agroecosys 73:101–109

    Article  Google Scholar 

  • Naef A, Defago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116:129–143

    Google Scholar 

  • Naef A, Zesiger T, Defago G (2006) Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. J Environ Qual 35:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Newhouse AE, Schrodt F, Liang HY, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987

    Article  CAS  PubMed  Google Scholar 

  • Nguyen Thu H (2004) Sicherheitsforschung und Monitoringmethoden zum Anbau von Bt Mais: Expression, Nachweis und Wirkung von rekombinantem Cry1Ab in heterologen Expressions systemen, Thesis, Georg-August-Universität, Göttingen, Germany

    Google Scholar 

  • Nottingham S (2002) Genescapes: the ecology of genetic engineering. Zed Books, London

    Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292

    Article  PubMed  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Oliveira AP, Pampulha ME, Bennett JP (2008) A two-year field study with transgenic Bacillus thuringiensis maize: effects on soil microorganisms. Sci Tot Environ 405:351–357

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Google Scholar 

  • Poerschmann J, Gathmann A, Augustin J, Langer U, GĂłrecki T (2005) Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize—characterization of lignin patterns. J Environ Qual 34:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JR, Levy-Booth DJ, Robert HG, Wendy LA, Rachel GC, Kari ED, Allan SH, Miranda MH, Sylvain L, Robert EN, Pauls KP, Peter HS, Clarence JS, Jack TT, John NK (2009) Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition. J Appl Ecol 46:388–396

    Article  CAS  Google Scholar 

  • Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol 369573:13. doi:10.5402/2011/369573

    Google Scholar 

  • Pu C, Liang J, Gao J, Wu C, Zhang M, Zhang Z, Cui Z, Cao H (2012) Effects of high producing methionine soybean transferred cystathionine Îł-synthase gene on community structure of bacteria in soil. J Nanjing Agric Univ 35:8–14

    CAS  Google Scholar 

  • Raubuch M, Roose K, Warnstorff K, Wichern F, Joergensen RG (2007) Respiration pattern and microbial use of field-grown transgenic Bt-maize residues. Soil Biol Biochem 39:2380–2389

    Article  CAS  Google Scholar 

  • Ren X (2006) Effect of Bt transgenic rice (KMD) on soil bacterial community and rhizosphere AM fungi. Dissertation, Zhejiang University. Hang Zhou, China

    Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142

    Article  CAS  PubMed  Google Scholar 

  • Rui YK, Yi GX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li QX (2005) Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World J Microbiol Biotech 21:1279–1284

    Article  CAS  Google Scholar 

  • Sawers RJ, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35–39

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2001a) Bt toxin uptake from soil by plants. Nat Biotechnol 19:199

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2001b) Bt corn has higher lignin content than non-Bt corn. Amer J Bot 88:1704–1706

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2003) Fate and effects in soil of insecticidal toxins from Bacillus thuringiensis in transgenic plants. In: Collection of biosafety reviews. pp 7–83. International Centre for Genetic Engineering and Biotechnology, Trieste, Italy

    Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480

    CAS  PubMed  Google Scholar 

  • Saxena D, Flores S, Stotzky G (2002) Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biol Biochem 34:133–137

    Article  CAS  Google Scholar 

  • Saxena RK, Saxena KB, Varshney RK (2010) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeon pea Cajanus cajan (L.) Millsp. Mol Breed 26:371–380

    Article  CAS  Google Scholar 

  • Schaarschmidt S, Gonzalez M-C, Roitsch T, Strack D, Sonnewald U, Hause B (2007) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650–1656

    Article  CAS  PubMed  Google Scholar 

  • Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90:1055–1062

    Article  PubMed  Google Scholar 

  • Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biol 327:639–648

    Article  Google Scholar 

  • Seppänen S-K, Pasonen H-L, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl Soil Ecol 36:100–106

    Article  Google Scholar 

  • Seres A, Nagy KP, Saly P, Darvas B, Bakonyi G (2014) Arbuscular mycorrhizal fungi colonisation of Cry3 toxin-producing Bt maize and near isogenic maize. Plant Soil Environ 60:569–573

    CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Shrawat AK, Carroll RT, De Paw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by tissue-specific expression of alanine aminotransferase. Plant Biotech J 6:722–732

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272

    Article  CAS  Google Scholar 

  • Smith TF (1978) A note on the effect of soil tillage on the frequency and vertical distribution of spores of vesicular-arbuscular endophytes. Aust J Soil Res 16:359–361

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge, UK

    Google Scholar 

  • Steinkellner S, Hage-Ahmed K, Garcia-Garrido JM, Illana A, Ocampo JA, Vierheilig H (2012) A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza 22:189–194

    Article  PubMed  Google Scholar 

  • Stotzky G (2004) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil 266:77–89

    Article  CAS  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tahiri-Alaoui A, Grison R, Gianinazzi-Pearson VT, Gianinazzi AS (1994) The impact of the constitutive expression of chitinases in roots of transgenic tobacco on arbuscular mycorrhizal fungi. In: Abstract 406 of the 7th international symposium on molecular plant–microbe interactions, Edinburgh, 26 June–1 July, 1994

    Google Scholar 

  • Tan FX, Wang JW, Feng YJ, Chi GL, Kong HL, Qiu HF, Wei SL (2010) Bt corn plants and their straw have no apparent impact on soil microbial communities. Plant Soil 329:349–364

    Article  CAS  Google Scholar 

  • Tan F, Wang J, Chen Z, Feng Y, Chi G, Rehman SU (2011) Assessment of the arbuscular mycorrhizal fungal community in roots and rhizosphere soils of Bt corn and their non-Bt isolines. Soil Biol Biochem 43:2473–2479

    Article  CAS  Google Scholar 

  • Tarkalson DD, Kachman SD, Knops KMN, Thies JE, Wortmann CS (2008) Decomposition of Bt and non-Bt corn hybrid residues in the field. Nutri Cycl Agroecosys 80:211–222

    Article  CAS  Google Scholar 

  • Thevissen K, Osborn R, Acland D, Broekaert WF (2000) Specific binding site for an antifungal plant defensin from Dahlia (Dahlia merckii) are required for antifungal activity. Mol Plant Microb Interact 13:54–61

    Article  CAS  Google Scholar 

  • Thevissen K, Francois IEJA, Takemoto JY, Ferket KKA, Meert EMK, Cammue BPA (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microb Lett 226:169–173

    Article  CAS  Google Scholar 

  • Tilston EL, Halpin C, Hopkins DW (2013) Simultaneous down regulation of enzymes in the phenylpropanoid pathway of plants has aggregated effects on rhizosphere microbial communities. Biol Fertil Soils 50:455–463

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004a) Development of a model system to assess the impact of genetically modified plants and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Castiglione MR, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii Lehm. expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Giovannetti M (2015) Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 166:121–131

    Article  PubMed  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Verbruggen E, Kuramae EE, Hillekens R, de Hollander M, Kiers ET, Röling WF, Kowalchuk GA, van der Heijden MG (2012) Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting. Appl Environ Microbiol 78:7384–7392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant-Microbe Interact 6:261–264

    Article  CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by vesicular–arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN (2007) Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manag Sci 63:388–393

    Article  CAS  PubMed  Google Scholar 

  • Wei XD, Zou HL, Chu LM, Liao B, Ye CM, Lan CY (2006) Field released transgenic papaya affects microbial communities and enzyme activities in soil. Plant Soil 285:347–358

    Article  CAS  Google Scholar 

  • Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM, Schloter M, Berg G, Smalla K (2009) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 75:3859–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Wohlfender-BĂĽhler D, Feusthuber E, Wäger R, Mann S, Aubry SJ (2016) Genetically modified crops in Switzerland: implications for agrosystem sustainability evidenced by multi-criteria model. Agron Sustain Dev 36:1–16

    Article  Google Scholar 

  • WrĂłbel-Kwiatkowska M, Turnau K, GĂłralska K, Anielska T, Szopa J (2012) Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 22:493–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu WX, Ye QF, Min H, Duan XJ, Jin WM (2004) Bt transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem 36:289–295

    Article  CAS  Google Scholar 

  • Wu WX, Liu W, Lu HH, Chen YX, Devare M, Thies J (2009) Use of C-13 labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67:93–102

    Article  CAS  PubMed  Google Scholar 

  • Xue K, Luo HF, Qi HY, Zhang HX (2005) Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. J Environ Sci-China 17:130–134

    CAS  PubMed  Google Scholar 

  • Xue K, Serohijos RC, Devare M, Thies JE (2011) Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field. Appl Environ Microbiol 77:839–846

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Yuan HX, Liu YL, Xu XP, Li BJ (2002) Research on root microorganism community of “RCH” transgenic rice. Chin J Agric Econ-China 10:29–31

    Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yocum DH, Larsen HJ, Boosalis MG (1985) The effects of tillage treatments and a fallow season on VA mycorrhizae in winter wheat. In: Molina R (ed) Proc. 6th North Am Conf on Mycorrhizae, Oregon State University, Corvallis

    Google Scholar 

  • Zeng H, Tan F, Zhang Y, Feng Y, Shu Y, Wang JW (2014) Effects of cultivation and return of Bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize. Soil Biol Biochem 75:254–263

    Article  CAS  Google Scholar 

  • Zeng H, Tan F, Shu Y, Zhang Y, Feng Y, Wang J (2015) The Cry1Ab protein has minor effects on the arbuscular mycorrhizal fungal communities after five seasons of continuous Bt maize cultivation. PLoS One 10:e0146041. doi:10.1371/journal.pone.0146041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness 5:116–123

    Article  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen C, Hilbeck A, Gugerli P, Nentwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol 12:765–775

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Muthukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mohandass, D., Muthukumar, T. (2017). An Insight into Genetically Modified Crop-Mycorrhizal Symbiosis. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_20

Download citation

Publish with us

Policies and ethics