Skip to main content

Cell Culture and Observation on Microfluidics

  • Chapter
  • First Online:
Cell Analysis on Microfluidics

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2050 Accesses

Abstract

Recent advances in microfluidic systems have led to the development of on-chip culture and observation. The on-chip culture offers several advantages over conventional in vitro culture methods: Reduced cell and reagent consumption, more accurate mimicking of in vivo cellular microenvironment, integrating function modules and controllable mechanical and chemical factors. These advantages support the microfluidic applications in biological science, especially for cellular dynamic study. Based on transparent characteristics of chip substrate, the microfluidic devices can be easily coupled to cell imaging methods and realize bio-application in cellomics. In this chapter, we introduce the development of microfluidic culture and how the microfluidic devices work in cell observations, especially for cell biology .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halldorsson S, Lucumi E, Gómez-Sjöberg R et al (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231

    Article  CAS  Google Scholar 

  2. Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto Calif) 1:423–449

    Article  CAS  Google Scholar 

  3. Yu H, Alexander CM, Beebe DJ (2007) Understanding microchannel culture: parameters involved in soluble factor signaling. Lab Chip 7:726–730

    Article  CAS  Google Scholar 

  4. Tilles AW, Baskaran H, Roy P et al (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 73:379–389

    Article  CAS  Google Scholar 

  5. Raty S, Walters EM, Davis J et al (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4:186–190

    Article  CAS  Google Scholar 

  6. Wang L, Sun B, Ziemer KS et al (2010) Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. J Biomed Mater Res A 93A:1260–1271

    CAS  Google Scholar 

  7. Yang L, Li L, Tu Q et al (2010) Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Anal Chem 82:6430–6439

    Article  CAS  Google Scholar 

  8. Ong SM, Zhang C, Toh YC et al (2008) A gel-free 3D microfluidic cell culture system. Biomaterials 29:3237–3244

    Article  CAS  Google Scholar 

  9. Choi J, Kim S, Jung J et al (2011) Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials 32:7013–7022

    Article  CAS  Google Scholar 

  10. Chung S, Sudo R, Mack PJ et al (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275

    Article  CAS  Google Scholar 

  11. Bersini S, Jeon JS, Dubini G et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:2454–2461

    Article  CAS  Google Scholar 

  12. Kim S, Lee H, Chung M et al (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500

    Article  CAS  Google Scholar 

  13. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Article  CAS  Google Scholar 

  14. Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109:9342–9347

    Article  CAS  Google Scholar 

  15. Lee H, Kim S, Chung M et al (2014) A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 91:90–98

    Article  CAS  Google Scholar 

  16. Baker BM, Trappmann B, Stapleton SC et al (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13:3246–3252

    Article  CAS  Google Scholar 

  17. Park YK, Tu TY, Lim SH et al (2014) In vitro microvessel growth and remodeling within a three-dimensional microfluidic environment. Cell Mol Bioeng 7:15–25

    Article  Google Scholar 

  18. Tourovskaia A, Fauver M, Kramer G et al (2014) Tissue-engineered microenvironment systems for modeling human vasculature. Exp Biol Med (Maywood) 239:1264–1271

    Article  CAS  Google Scholar 

  19. Mu X, Zheng W, Xiao L et al (2013) Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 13:1612–1618

    Article  CAS  Google Scholar 

  20. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  21. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  22. Kwapiszewska K, Michalczuk A, Rybka M et al (2014) A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip 14:2096–2104

    Article  CAS  Google Scholar 

  23. Ziolkowska K, Stelmachowska A, Kwapiszewski R et al (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 40:68–74

    Article  CAS  Google Scholar 

  24. Choi YJ, Park J, Lee SH (2013) Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer’s disease studies. Biomaterials 34:2938–2946

    Article  CAS  Google Scholar 

  25. van Duinen V, Trietsch SJ, Joore J et al (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    Article  CAS  Google Scholar 

  26. Song HH, Park KM, Gerecht S (2014) Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 79–80:19–29

    Article  CAS  Google Scholar 

  27. Novo P, Dell’Aica M, Janasek D et al (2016) High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 141:1888–1905

    Article  CAS  Google Scholar 

  28. Chiang YY, Haeri S, Gizewski C et al (2013) Whole cell quenched flow analysis. Anal Chem 85:11560–11567

    Article  CAS  Google Scholar 

  29. Holmes D, Whyte G, Bailey J et al (2014) Separation of blood cells with differing deformability using deterministic lateral displacement(dagger). Interface Focus 4:20140011

    Article  Google Scholar 

  30. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506

    Article  CAS  Google Scholar 

  31. Bruus H (2012) Acoustofluidics 10: scaling laws in acoustophoresis. Lab Chip 12:1578–1586

    Article  CAS  Google Scholar 

  32. Pohl HA, Crane JS (1971) Dielectrophoresis of cells. Biophys J 11:711

    Article  CAS  Google Scholar 

  33. Salmanzadeh A, Romero L, Shafiee H et al (2012) Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12:182–189

    Article  CAS  Google Scholar 

  34. Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710

    Article  CAS  Google Scholar 

  35. Del Giudice F, Madadi H, Villone MM et al (2015) Magnetophoresis ‘meets’ viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip 15:1912–1922

    Article  CAS  Google Scholar 

  36. Collins DJ, Alan T, Neild A (2014) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14:1595–1603

    Article  CAS  Google Scholar 

  37. Beech JP, Jonsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9:2698–2706

    Article  CAS  Google Scholar 

  38. Adams JD, Thevoz P, Bruus H et al (2009) Integrated acoustic and magnetic separation in microfluidic channels. Appl Phys Lett 95:254103

    Article  CAS  Google Scholar 

  39. Novo P, Volpetti F, Chu V et al (2013) Control of sequential fluid delivery in a fully autonomous capillary microfluidic device. Lab Chip 13:641–645

    Article  CAS  Google Scholar 

  40. Novo P, Chu V, Conde JP (2014) Integrated optical detection of autonomous capillary microfluidic immunoassays: a hand-held point-of-care prototype. Biosens Bioelectron 57:284–291

    Article  CAS  Google Scholar 

  41. Hughes AJ, Spelke DP, Xu Z et al (2014) Single-cell western blotting. Nat Methods 11:749–755

    Article  CAS  Google Scholar 

  42. Denervaud N, Becker J, Delgado-Gonzalo R et al (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci U S A 110:15842–15847

    Article  CAS  Google Scholar 

  43. Chingozha L, Zhan M, Zhu C et al (2014) A generalizable, tunable microfluidic platform for delivering fast temporally varying chemical signals to probe single-cell response dynamics. Anal Chem 86:10138–10147

    Article  CAS  Google Scholar 

  44. Ng AH, Dean Chamberlain M, Situ H et al (2015) Digital microfluidic immunocytochemistry in single cells. Nat Commun 6:7513

    Article  CAS  Google Scholar 

  45. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Article  CAS  Google Scholar 

  46. Solari FA, Dell’Aica M, Sickmann A et al (2015) Why phosphoproteomics is still a challenge. Mol BioSyst 11:1487–1493

    Article  CAS  Google Scholar 

  47. Nguyen N-T, Wu Z (2004) Micromixers—a review. J Micromech Microeng 15:R1

    Article  Google Scholar 

  48. Enger J, Goksor M, Ramser K et al (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4:196–200

    Article  CAS  Google Scholar 

  49. Eriksson E, Enger J, Nordlander B et al (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7:71–76

    Article  CAS  Google Scholar 

  50. Umehara S, Wakamoto Y, Inoue I et al (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophy Res Co 305:534–540

    Article  CAS  Google Scholar 

  51. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sensor Actuat B-Chem 92:315–325

    Article  CAS  Google Scholar 

  52. Warrick JW, Murphy WL, Beebe DJ (2008) Screening the cellular microenvironment: a role for microfluidics. IEEE Rev Biomed Eng 1:75–93

    Article  Google Scholar 

  53. Yun JY, Jambovane S, Kim S-K et al (2011) Log-scale dose response of inhibitors on a chip. Anal Chem 83:6148–6153

    Article  CAS  Google Scholar 

  54. Lucchetta EM, Lee JH, Fu LA et al (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138

    Article  CAS  Google Scholar 

  55. Li R, Lv X, Zhang X et al (2016) Microfluidics for cell-cell interactions: a review. Front Chem Sci Eng 10:90–98

    Google Scholar 

  56. Dertinger SKW, Jiang X, Li Z et al (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99:12542–12547

    Article  CAS  Google Scholar 

  57. Lin X, Chen Q, Liu W et al (2015) Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Sci Rep 5:9643

    Article  CAS  Google Scholar 

  58. Vickerman V, Blundo J, Chung S et al (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468–1477

    Article  CAS  Google Scholar 

  59. Mack PJ, Zhang Y, Chung S et al (2009) Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J Biol Chem 284:8412–8420

    Article  CAS  Google Scholar 

  60. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108:15342–15347

    Article  CAS  Google Scholar 

  61. Mosadegh B, Huang C, Park JW et al (2007) Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23:10910–10912

    Article  CAS  Google Scholar 

  62. Wu H, Huang B, Zare RN (2006) Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 128:4194–4195

    Article  CAS  Google Scholar 

  63. Abhyankar VV, Lokuta MA, Huttenlocher A et al (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389–393

    Article  CAS  Google Scholar 

  64. Saadi W, Rhee SW, Lin F et al (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9:627–635

    Article  Google Scholar 

  65. Faure-Andre G, Vargas P, Yuseff M-I et al (2008) Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322:1705–1710

    Article  CAS  Google Scholar 

  66. Irimia D, Toner M (2009) Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol-UK 1:506–512

    Article  CAS  Google Scholar 

  67. Lucchetta EM, Lee JH, Fu LA et al (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138

    Article  CAS  Google Scholar 

  68. Pearce TM, Wilson JA, Oakes SG et al (2005) Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab Chip 5:97–101

    Article  CAS  Google Scholar 

  69. Long T, Ford RM (2009) Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor. Environ Sci Technol 43:1546–1552

    Article  CAS  Google Scholar 

  70. Toh AGG, Wang ZP, Yang C et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18

    Google Scholar 

  71. Jeon NL, Dertinger SK, Chiu DT et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    Article  CAS  Google Scholar 

  72. Hung PJ, Lee PJ, Sabounchi P et al (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotech Bioeng 89:1–8

    Article  CAS  Google Scholar 

  73. Irimia D, Charras G, Agrawal N et al (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7:1783–1790

    Article  CAS  Google Scholar 

  74. Atencia J, Cooksey GA, Locascio LE (2012) A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12:309–316

    Article  CAS  Google Scholar 

  75. Ahmed T, Shimizu TS, Stocker R (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett 10:3379–3385

    Article  CAS  Google Scholar 

  76. Kothapalli CR, Van Veen E, De Valence S et al (2011) A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 11:497–507

    Article  CAS  Google Scholar 

  77. Haessler U, Pisano M, Wu M et al (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 108:5614–5619

    Article  CAS  Google Scholar 

  78. Qasaimeh MA, Gervais T, Juncker D (2011) Microfluidic quadrupole and floating concentration gradient. Nat Commun 2:464

    Article  CAS  Google Scholar 

  79. Wang S-J, Saadi W, Lin F et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300:180–189

    Article  CAS  Google Scholar 

  80. Nandagopal S, Wu D, Lin F (2011) Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS ONE 6:e18183

    Article  CAS  Google Scholar 

  81. Jeon NL, Baskaran H, Dertinger SK et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830

    Article  CAS  Google Scholar 

  82. Barkefors I, Le Jan S, Jakobsson L et al (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor a and fibroblast growth factor 2 effects on chemotaxis and chemokinesis. J Biol Chem 283:13905–13912

    Article  CAS  Google Scholar 

  83. Irimia D, Liu S-Y, Tharp WG et al (2006) Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6:191–198

    Article  CAS  Google Scholar 

  84. Chung BG, Flanagan LA, Rhee SW et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406

    Article  CAS  Google Scholar 

  85. Park JY, Hwang CM, Lee SH et al (2007) Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab Chip 7:1673–1680

    Article  CAS  Google Scholar 

  86. Gupta K, Kim D-H, Ellison D et al (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10:2019–2031

    Article  CAS  Google Scholar 

  87. Li GN, Liu J, Hoffman-Kim D (2008) Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth. Ann Biomed Eng 36:889–904

    Article  Google Scholar 

  88. Lin F (2009) A microfluidics-based method for analyzing leukocyte migration to chemoattractant gradients. Method Enzymol 461:333–347

    Article  CAS  Google Scholar 

  89. van der Meer AD, Vermeul K, Poot AA et al (2010) A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol-Heart C 298:H719–H725

    Article  CAS  Google Scholar 

  90. Heo Y, Cabrera L, Bormann C et al (2010) Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 25:613–622

    Article  CAS  Google Scholar 

  91. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  CAS  Google Scholar 

  92. Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99:769–775

    Google Scholar 

  93. Zigmond SH, Hirsch JG (1973) Leukocyte locomotion and chemotaxis new methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med 137:387–410

    Article  CAS  Google Scholar 

  94. Kim M, Kim T (2010) Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis Assays. Anal Chem 82:9401–9409

    Article  CAS  Google Scholar 

  95. Yap B, Kamm RD (1985) Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98:1930–1939

    Article  Google Scholar 

  96. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545

    Article  CAS  Google Scholar 

  97. Toh AG, Wang Z, Yang C et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18

    Article  Google Scholar 

  98. Li R, Lv X, Zhang X, Saeed O, Deng Y (2016) Microfluidics for cell-cell interactions: a review. Front Chem Sci Eng 10:90–98

    Article  Google Scholar 

  99. Huang CP, Lu J, Seon H et al (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748

    Article  CAS  Google Scholar 

  100. van der Meer AD, Orlova VV, ten Dijke P et al (2013) Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13:3562–3568

    Article  CAS  Google Scholar 

  101. Jie M, Li H-F, Lin L et al (2016) Integrated microfluidic system for cell co-culture and simulation of drug metabolism. Rsc Adv 6:54564–54572

    Article  CAS  Google Scholar 

  102. Chen Q, Wu J, Zhuang Q et al (2013) Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci Rep 3:2433

    Article  Google Scholar 

  103. Gao D, Liu H, Lin JM et al (2012) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13:978–985

    Article  CAS  Google Scholar 

  104. Wu J, Jie M, Dong X et al (2016) Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Rapid Commun Mass Spectrom 30:80–86

    Article  CAS  Google Scholar 

  105. Mao S, Zhang J, Li H et al (2013) Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication. Anal Chem 85:868–876

    Article  CAS  Google Scholar 

  106. Kane RS, Takayama S, Ostuni E et al (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376

    Article  CAS  Google Scholar 

  107. Abhyankar VV, Beebe DJ (2007) Spatiotemporal micropatterning of cells on arbitrary substrates. Anal Chem 79:4066–4073

    Article  CAS  Google Scholar 

  108. Chen CS, Jiang X, Whitesides GM (2005) Microengineering the environment of mammalian cells in culture. MRS Bull 30:194–201

    Article  CAS  Google Scholar 

  109. Liu W, Li L, Wang X et al (2010) An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically. Lab Chip 10:1717–1724

    Article  CAS  Google Scholar 

  110. Businaro L, De Ninno A, Schiavoni G et al (2013) Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13:229–239

    Article  CAS  Google Scholar 

  111. Ostrovidov S, Sakai Y, Fujii T (2011) Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices 13:847–864

    Article  CAS  Google Scholar 

  112. Chin L, Luo K, Park W et al (2012) Double-layer hepatocyte tumor co-culture using hydrogel for drug effectivity and specificity analysis. In: Micro electro mechanical systems (MEMS), 2012 IEEE 25th international conference on, IEEE, pp. 808–811

    Google Scholar 

  113. Discher DE, Janmey P, Y-l Wang (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  Google Scholar 

  114. Trappmann B, Gautrot JE, Connelly JT et al (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649

    Article  CAS  Google Scholar 

  115. Fischbach C, Kong HJ, Hsiong SX, Evangelista MB, Yuen W, Mooney DJ (2009) Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A 106:399–404

    Article  CAS  Google Scholar 

  116. Gunawan RC, Silvestre J, Gaskins HR et al (2006) Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir 22:4250–4258

    Article  CAS  Google Scholar 

  117. Haessler U, Teo JCM, Foretay D et al (2012) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol 4:401–409

    Article  CAS  Google Scholar 

  118. Terrill RH, Balss KM, Zhang Y et al (2000) Dynamic monolayer gradients: Active spatiotemporal control of alkanethiol coatings on thin gold films. J Am Chem Soc 122:988–989

    Article  CAS  Google Scholar 

  119. Hypolite CL, McLernon TL, Adams DN et al (1997) Formation of microscale gradients of protein using heterobifunctional photolinkers. Bioconjugate Chem 8:658–663

    Article  CAS  Google Scholar 

  120. Herbert CB, McLernon TL, Hypolite CL et al (1997) Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem Biol 4:731–737

    Article  CAS  Google Scholar 

  121. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  CAS  Google Scholar 

  122. Koh WG, Pishko MV (2006) Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 385:1389–1397

    Article  CAS  Google Scholar 

  123. Wu H, Huang B, Zare RN (2006) Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 128:4194–4195

    Article  CAS  Google Scholar 

  124. Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094

    Article  CAS  Google Scholar 

  125. Loutherback K, Chen L, Holman HY (2015) Open-channel microfluidic membrane device for long-term FT-IR spectromicroscopy of live adherent cells. Anal Chem 87:4601–4606

    Article  CAS  Google Scholar 

  126. Chen L, Choo J (2008) Recent advances in surface‐enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828

    Google Scholar 

  127. Wegener J, Keese CR, Giaever I (2000) Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    Article  CAS  Google Scholar 

  128. Leduc C, Si S, Gautier J et al (2013) A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett 13:1489–1494

    Article  CAS  Google Scholar 

  129. Yi L, Lin X, Li H et al (2017) Dynamic imaging of MYC and CDKN1A mRNAs as an indicator of cell G1-phase arrest. Chem Commun 53:1900–1903

    Article  CAS  Google Scholar 

  130. Okagbare PI, Soper SA (2009) High throughput single molecule detection for monitoring biochemical reactions. Analyst 134:97–106

    Article  CAS  Google Scholar 

  131. Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094

    Article  CAS  Google Scholar 

  132. Ewald AJ (2013) Practical considerations for long-term time-lapse imaging of epithelial morphogenesis in three-dimensional organotypic cultures. Cold Spring Harb Protoc 2013:100–117

    Google Scholar 

  133. Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581

    Article  CAS  Google Scholar 

  134. Deng S, Yu X, Liu R et al (2016) A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance. Biomicrofluidics 10:044109

    Article  CAS  Google Scholar 

  135. Underwood JM, Imbalzano KM, Weaver VM et al (2006) The ultrastructure of MCF-10A acini. J Cell Physiol 208:141–148

    Article  CAS  Google Scholar 

  136. Ewald AJ, Huebner RJ, Palsdottir H et al (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125:2638–2654

    Article  CAS  Google Scholar 

  137. Kitamori T, Tokeshi M, Hibara A et al (2004) Peer reviewed: thermal lens microscopy and microchip chemistry. Anal Chem 76:52 A–60 A

    Google Scholar 

  138. Lasne D, Blab GA, Berciaud S et al (2006) Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophy J 91:4598–4604

    Article  CAS  Google Scholar 

  139. Bagnaninchi PO, Drummond N (2011) Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc Natl Acad Sci U S A 108:6462–6467

    Article  CAS  Google Scholar 

  140. Gawad S, Cheung K, Seger U et al (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251

    Article  CAS  Google Scholar 

  141. Chen N-C, Chen C-H, Chen M-K et al (2014) Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device. Sens Actuat B-Chem 190:570–577

    Article  CAS  Google Scholar 

  142. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    Article  CAS  Google Scholar 

  143. Caviglia C, Zor K, Canepa S et al (2015) Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay. Analyst 140:3623–3629

    Article  CAS  Google Scholar 

  144. Liu Q, Wu C, Cai H et al (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461

    Article  CAS  Google Scholar 

  145. Reybier K, Ribaut C, Coste A et al (2010) Characterization of oxidative stress in Leishmaniasis-infected or LPS-stimulated macrophages using electrochemical impedance spectroscopy. Biosens Bioelectron 25:2566–2572

    Article  CAS  Google Scholar 

  146. Zhou Y, Basu S, Laue E et al (2016) Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectron 81:249–258

    Article  CAS  Google Scholar 

  147. Manczak R, Fouet M, Courson R et al (2016) Improved on-chip impedimetric immuno-detection of subpopulations of cells toward single-cell resolution. Sens Actua B-Chem 230:825–831

    Article  CAS  Google Scholar 

  148. Nwankire CE, Venkatanarayanan A, Glennon T et al (2015) Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron 68:382–389

    Article  CAS  Google Scholar 

  149. Gómez-Sjöberg R, Leyrat AA, Pirone DM et al (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563

    Article  CAS  Google Scholar 

  150. Park JY, Kim SK, Woo DH et al (2009) Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27:2646–2654

    Article  CAS  Google Scholar 

  151. Tan W, Desai TA (2003) Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng 9:255–267

    Article  CAS  Google Scholar 

  152. Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14–19

    Article  CAS  Google Scholar 

  153. Liedert A, Kaspar D, Blakytny R et al (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophy Res Commun 349:1–5

    Article  CAS  Google Scholar 

  154. Huang W-H, Cheng W, Zhang Z et al (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76:483–488

    Article  CAS  Google Scholar 

  155. Toriello NM, Douglas ES, Thaitrong N et al (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105:20173–20178

    Article  CAS  Google Scholar 

  156. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  Google Scholar 

  157. Yang M, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001

    Article  CAS  Google Scholar 

  158. Glasgow IK, Zeringue HC, Beebe DJ et al (1998) Individual embryo transport and retention on a chip. In: Micro total analysis systems’ 98, Springer, pp. 199–202

    Google Scholar 

  159. Tamaki E, Sato K, Tokeshi M et al (2002) Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal Chem 74:1560–1564

    Article  CAS  Google Scholar 

  160. Kapur R, Giuliano KA, Campana M et al (1999) Streamlining the drug discovery process by integrating miniaturization, high throughput screening, high content screening, and automation on the cellchip™ system. Biomed Microdevices 2:99–109

    Article  CAS  Google Scholar 

  161. Hediger S, Sayah A, Horisberger J et al (2001) Modular microsystem for epithelial cell culture and electrical characterisation. Biosens Bioelectron 16:689–694

    Article  CAS  Google Scholar 

  162. Cai X, Klauke N, Glidle A et al (2002) Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Anal Chem 74:908–914

    Article  CAS  Google Scholar 

  163. Heuschkel MO, Guérin L, Buisson B et al (1998) Buried microchannels in photopolymer for delivering of solutions to neurons in a network. Sens Actuat B-Chem 48:356–361

    Article  CAS  Google Scholar 

  164. Chen P, Feng X, Chen D et al (2016) Investigating intercellular calcium waves by microfluidic gated pinched-flow. Sens Actuat B-Chem 234:583–592

    Article  CAS  Google Scholar 

  165. Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10:628–638

    Article  CAS  Google Scholar 

  166. Yates LL, Schnatwinkel C, Hazelwood L et al (2013) Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung. Dev Biol 373:267–280

    Article  CAS  Google Scholar 

  167. Onodera T, Sakai T, Hsu JC-f et al (2010) Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science 329:562–565

    Google Scholar 

  168. Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881

    Article  CAS  Google Scholar 

  169. Chi X, Michos O, Shakya R et al (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209

    Article  CAS  Google Scholar 

  170. Shintu L, Rg Baudoin, Navratil V et al (2012) Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal Chem 84:1840–1848

    Article  CAS  Google Scholar 

  171. Do J, Lee S, Han J et al (2008) Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip 8:2113–2120

    Article  CAS  Google Scholar 

  172. Buehler S, Stubbe M, Gimsa U et al (2011) A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: Measurements in metabolic cell-culture chips. Toxicol Lett 207:182–190

    Article  CAS  Google Scholar 

  173. Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart-on-chip technologies. Nat Med 20:616

    Article  CAS  Google Scholar 

  174. Bavli D, Prill S, Ezra E et al (2016) Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci U S A 113:E2231–E2240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yi, L., Lin, JM. (2018). Cell Culture and Observation on Microfluidics. In: Lin, JM. (eds) Cell Analysis on Microfluidics. Integrated Analytical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-5394-8_4

Download citation

Publish with us

Policies and ethics