Skip to main content

Multimodal Classification of Arrhythmia and Ischemia Using QRS-ST Analysis

  • Chapter
  • First Online:
Advances in Systems, Control and Automation

Abstract

Probabilistic classification approaches have been presented for arrhythmic and ischemic data using QRS-ST evaluation. The proposed methodology is segregated into two major parts, i.e., (a) detection of QRS complex and ST segments by improvised Pan-Tompkins and difference operation method, respectively, and (b) classification of healthy, arrhythmic, and ischemic classes using linear discriminant analysis (LDA), decision tree (DT), and artificial neural network (ANN), respectively. Two correlative classification features (frequency and time domain) of QRS-ST, i.e., (1) ratio of power spectrum (PS) and power spectral density (PSD) and (2) area under the curve (AUC), are introduced to these classifiers. The algorithm is evaluated and validated with standard databases such as FANTASIA (healthy), MIT-BIH Arrhythmia (arrhythmic), and long-term ST database (ischemic), respectively. For uniform probability classification, ECG episodes with 100% sensitivity (Se) and the specificity (Sp) are included in this analytical modeling. As the experimentation is performed to validate the possibility of these features for classification, the percentage of classification certainly could be improved by considering other vital features. We conclude that correlative analysis of QRS-ST may be evoked as significant marker for arrhythmia and ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghuran, A.V., Camm, A.J.: Ischaemic heart disease presenting as arrhythmias. Br. Med Bull. 59, 193–210 (2001)

    Google Scholar 

  2. Channer, K., Morris, F.: ABC of clinical electrocardiography myocardial ischemia. BMJ. 324, 1023–1026 (2002)

    Google Scholar 

  3. Pueyo, E., Sörnmo, L., Laguna, P.: QRS Slopes for detection and characterization of myocardial ischemia. IEEE Trans. Biomed. Eng. 55(2) (2008)

    Google Scholar 

  4. Pettersson, J., Pahlm, O., Cairo, E., Edenbrandt, L., Ringborn, M., Sörnmo, L., Warren, S.G., Wagner,G.S.: Changes in high-frequency QRS components are more sensitive than ST-segment deviation for detecting acute coronary artery occlusion. J. Amer. Coll. Cardiol. 36, 1827–1834 (2000)

    Google Scholar 

  5. Abboud, S., Cohen, R.J., Selwyn, A., Ganz, P., Sadeh, D., Friedman, P.L.: Detection of transient myocardial ischemia by computer analysis of standard and signal-averaged high frequency electrocardiograms in patients undergoing percutaneous transluminal coronary angioplasty. Circulation 76(3), 585–596 (1987)

    Article  Google Scholar 

  6. Beker, A., Pinchas, A., Erel, J., Abboud, S.: Analysis of high frequency QRS potential during exercise testing in patients with coronary artery disease and in healthy subjects. Pacing Clin. Electrophysiol. 19(12), 2040–2050 (1996)

    Article  Google Scholar 

  7. Candil, J.J., Luengo, C.M.: QT interval and acute myocardial ischemia: past promises. New Evidences Rev. Esp. Cardiol. 61(6), 561–563 (2008)

    Article  Google Scholar 

  8. Xu, X., Liu, Y.: ECG QRS Complex Detection Using Slope Vector Waveform (SVW) algorithm. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA (2004)

    Google Scholar 

  9. Arzeno, N.M., Deng, Z.D., Poon, C.S.: Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 55(2) (2008)

    Google Scholar 

  10. Li, C.W., Zheng, C.X., Tai, C.F.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  11. Benitez, D., Gaydecki, P.A., Zaidi, A., Fitzpatrick, A.P.: The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med. 31, 399–406 (2001)

    Article  Google Scholar 

  12. Vijaya, G., Kumar, V., Verma, H.K.: ANN-based QRS-complex analysis of ECG. J. Med. Eng. Technol. 22(4), 160–167 (1998)

    Article  Google Scholar 

  13. Keselbrener, L., Keselbrener, M., Akselrod, S.: Nonlinear high pass filter for R-wave detection in ECG signal. Med. Eng. Phys. 19(5), 481–484 (1997)

    Article  Google Scholar 

  14. Dokur, Z., Olmez, T., Yazgan, E., Ersoy, O.K.: Detection of ECG waveforms by neural networks. Med. Eng. Phys. 19(8), 738–741 (1997)

    Article  Google Scholar 

  15. Kadambe, S., Murray, R., Boundreaux-Bartels, G.F.: Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46(7), 838–848 (1999)

    Article  Google Scholar 

  16. Afonso, V.X., Tomkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  17. Suarez, K.V., Silva, J.C., Berthoumieu, Y., Gomis, P., Najim, M.: ECG beat detection using a geometrical matching approach. IEEE Trans. Biomed. Eng. 54(4), 641–650 (2007)

    Article  Google Scholar 

  18. Slimane, Z.E.H., Ali, A.N.: QRS complex detection using empirical mode decomposition. Digit. Sig. Proc. (2009). doi:10.1016/j.dsp.2009.10.017

    Google Scholar 

  19. Christov, I.I.: Real time electrocardiogram QRS detection using combined adaptive threshold. BioMed. Eng. Online. 3, 28 (2004). http://www.biomedical-engineering-online.com/content/3/1/28

  20. Romero, D., Ringborn, M., Laguna, P., Pahlm, O., Pueyo, E.: Depolarization changes during acute myocardial ischemia by evaluation of QRS slopes: standard lead and vectorial approach. IEEE Trans. Biomed. Eng. 58(1) (2011)

    Google Scholar 

  21. Karimipour, A., Homaeinezhad, M.R.: Real-time electrocardiogram P-QRS-T detection–delineation algorithm based on quality-supported analysis of characteristic templates. Comput. Biol. Med. 52, 153–165 (2014)

    Article  Google Scholar 

  22. Portet, F., Hernandez, A.I., Carrault, G.: Evaluation of real-time QRS detection algorithms in variable contexts. Med. Biol. Eng. Comput. 43(3), 379–385 (2005)

    Article  Google Scholar 

  23. Yeha, Y.C., Wang, W.J.: QRS complexes detection for ECG signal: the difference operation method. Comput. Meth. Programs Biomed. 91, 245–254 (2008)

    Article  Google Scholar 

  24. Iyengar, N., Peng, C.K., Morin, R., Goldberger, A.L., Lipsitz, L.A.: Age-related alterations in the fractal scaling of cardiac inter beat interval dynamics. Am. J. Physiol. 271, 1078–1084 (1996)

    Google Scholar 

  25. Goldberger, A.L., Amaral, A.L., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  26. Jager, F., Taddei, A., Moody, G.B., Emdin, M., Antolic, G., Dorn, R., Smrdel, A., Marchesi, C., Mark, R.G.: Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biolog. Eng. Comput. 41(2), 172–183 (2003)

    Google Scholar 

  27. Goovaerts, H.G., Ros, H.H., vanden Akker, T.J., Schneider, H.: A digital QRS detector based on the principle of contour limiting. IEEE Trans. Biomed. Eng BME. 23, 154 (1976)

    Google Scholar 

  28. Thakor, N.V., Webster, J.G., Tompkins, W.J.: Optimal QRS detector. Med. BioL Eng. Comput. 21, 343–350 (1983)

    Google Scholar 

  29. Sedghamiz, H.: Complete Implementation of pan tompkins [Online] (2014). Available: http://in.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector

  30. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME 32(3) (1985)

    Google Scholar 

  31. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6, 525–533 (1993)

    Google Scholar 

  32. Bhoi, A.K., Sherpa, K.S., Khandelwal, B.: Classification probability analysis for arrhythmia and ischemia using frequency domain features of QRS complex. Int. J. Bioautom. 19(4), 531–542 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Kumar Bhoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhoi, A.K., Sherpa, K.S., Khandelwal, B. (2018). Multimodal Classification of Arrhythmia and Ischemia Using QRS-ST Analysis. In: Konkani, A., Bera, R., Paul, S. (eds) Advances in Systems, Control and Automation. Lecture Notes in Electrical Engineering, vol 442. Springer, Singapore. https://doi.org/10.1007/978-981-10-4762-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4762-6_65

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4761-9

  • Online ISBN: 978-981-10-4762-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics