Skip to main content

Application of Nanotechnology for Cancer Treatment

  • Chapter
  • First Online:
Advances in Animal Biotechnology and its Applications

Abstract

Cancer has become a big threat to mankind worldwide. This disease is the second most common disease with maximum mortality. According to the recent report from ICMR, 1300 people die every day in India because of cancer. Despite having good progress in diagnosis as well as in treatment, cancer is still a big nuance to our society. It has become more and more clearer in the recent times and evident that the development of new drugs alone is not enough for ensuring progress in drug therapy. This is why to achieve high intra-tumor drug concentration along with minimum exposure of drugs to normal tissue is the most important goal of anticancer drug delivery. These problems can be overcome by using nanoparticles for their delivery. It enhances the permeability and retention onto the tumor cells and not onto healthy cells. It also helps in delivering the slow and controlled release to the targeted cells. Drug carriers in nanoscale offer the chances of enhancing the therapeutic index of drug molecules by diminishing their toxicity against physiological tissues and achieving controlled therapeutic levels of the drug for a long time. It would minimize the concentration of drug intake and maximize the overall profile of absorption, biodistribution, metabolism, and excretion (ADME) profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  CAS  Google Scholar 

  • Ali I, Rahis-Uddin SK, Rather MA, Wani WA, Haque A (2011) Advances in nano drugs for cancer chemotherapy. Curr Cancer Drug Targets 11(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28(1):1–12

    Article  CAS  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA (2012) Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 16(9):1991–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora P, Sindhu A, Kaur H, Dilbaghi N, Chaudhury A (2013) An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol 97(5):1829

    Article  CAS  PubMed  Google Scholar 

  • Bakers RJ (2009) Dendrimer-based nanoparticles for cancer therapy. Hematology 1:708–719

    Article  Google Scholar 

  • Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nanoparticles. Afr J Biotechnol 13(28):2778–2785

    Article  CAS  Google Scholar 

  • Bao H, Zhang Q, Xu H, Yan Z (2016) Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: in vitro and in vivo studies. Int J Nanomedicine 7(11):929–940

    Google Scholar 

  • Barenholz Y (2012) Doxil -the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  • Byrne J, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(14):1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Chen X (2007) Nano platforms for targeted molecular imaging in living subjects. Small 3:1840–1854

    Article  CAS  PubMed  Google Scholar 

  • Cho CS, Cho KY, Park IK, Kim SH, Sasagawa T, Uchiyama M, Akaike T (2001) Receptor mediated delivery of all trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J Control Release 77(1–2):7–15

    Article  CAS  PubMed  Google Scholar 

  • Divakar P, Kumar D, Praveen C, Sowmya C, Suryaprakash Reddy C (2013) Formulation and in vitro evaluation of liposomes containing metformin hydrochloride. Int J Res Pharm Biomed Sci 4(2):479–485

    CAS  Google Scholar 

  • Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T (2011) Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv 2011:418316

    Article  CAS  PubMed  Google Scholar 

  • Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T (2013) Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS Pharm Sci Tech 14:133–140

    Article  CAS  Google Scholar 

  • Dubey V, Mishra D, Jain NK (2007) Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm 67(2):398–405

    Article  CAS  PubMed  Google Scholar 

  • El-Kassas H, Attia AA (2014) Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev 15:1299–1306

    Article  PubMed  Google Scholar 

  • Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam K, Elsayed MT, Hashem Y, Mohamed O (2016) Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr Pharm Des 22:3305–3323

    Article  CAS  PubMed  Google Scholar 

  • Estanqueiro M, Amaral MH, Conceiçao J, Sousa Lobo JM (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces 126:631–648

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Sun J, Jiang X (2016) Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nano Scale. https://doi.org/10.1039/C5NR07964K

  • Gao Z, Lukyanov A, Singhal A, Torchilin V (2002) Diacyllipid-polymer micelles as nano- carriers for poorly soluble anticancer drugs. Nano Lett 2(9):979–982

    Article  CAS  Google Scholar 

  • Giri S, Karakoti A, Graham RP, Maguire JL, Reilly CM, Seal S, Rattan R, Shridhar V (2013) Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS One 81:545–578

    Google Scholar 

  • Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Calis S, Simonoska M, Hincal AA (2003) 5-Fluorouracil in topical liposome gels for anticancer treatment-formulation and evaluation. Acta Pharma 53(4):241–250

    CAS  Google Scholar 

  • Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20(1):63–102

    Article  CAS  PubMed  Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Aggarwal G, Singla S, Arora R (2012) Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci Pharm 80(4):1061–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Chakraborty S, Saha S, Chandel S, Baranwal A, Banerjee M, Chatterjee M, Chaudhury A (2016) Antinociceptive properties of shikonin: in vitro and in vivo studies. Canad J Physiol Pharmacol. https://doi.org/10.1139/cjpp-2015-0465

  • Hayashi M, Silanikove N, Chang X, Ravi R, Pham V, Baia G, Paz K, Brait M, Sidransky D (2015) Milk derived colloid as a novel drug delivery carrier for breast cancer. Cancer Biol Ther 16(8):1184–1193

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofferberth SC, Grinstaff MW, Colson YL (2016) Nanotechnology applications in thoracic surgery. Eur J Cardiothorac Surg 50(1):6–16. PMID 26843431

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou XY, Jiang G, Yang CS, Tang JQ, Wei ZP, Liu YQ (2016) Application of nanotechnology in the diagnosis and therapy of hepatocellular carcinoma. Recent Pat Anticancer Drug Discov 11(3):322–331. PMID:26955964

    Article  CAS  PubMed  Google Scholar 

  • Irfan M, Verma S, Ram A (2012) Preparation and characterization of Ibuprofen loaded transferosome as a novel carrier for transdermal drug delivery system. Asian J Pharm Clin Res 5:162–165

    CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Jing L, Liang X, Li X, Lin L, Yang Y, Yue X, Dai Z (2014) Mn-porphyrin conjugated au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer. Theranostics. 2014 4(9):858–871. https://doi.org/10.7150/thno.8818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W (2015) Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv 2:1–9

    Article  CAS  Google Scholar 

  • Kaur P, Thakur R, Chaudhury A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1(6):83–86

    Google Scholar 

  • Kaur P, Chaudhury A, Thakur R (2013) Synthesis of chitosan-silver nanocomposites and their antibacterial activity. Int J Sci Eng Res 4(4):869

    Google Scholar 

  • Kaur P, Thakur R, Barnela M, Chopra M, Manuja A, Chaudhury A (2014) Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan–metal nanocomposites. J Chem Technol Biotech. https://doi.org/10.1002/jctb.4383

  • Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 9(1):33–38

    Article  CAS  Google Scholar 

  • Koziorowski J, Stanciu AE, Gómez-Vallejo V, Llop J (2016) Radiolabeled nanoparticles for cancer diagnosis and therapy. Anticancer Agents Med Chem. 17 333–354 PMID:26899184

    Article  CAS  PubMed  Google Scholar 

  • Kulhari A, Sheorayan A, Chaudhury A (2013) Targeted chemotherapeutics: an overview of recent progress in effectual cancer treatment. Pharmacologia 4(9):535–552

    Article  CAS  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  CAS  PubMed  Google Scholar 

  • Martins AF, Follmann HD, Monteiro JP, Bonafé EG, Nocchi S, Silva CT, Nakamura CV, Girotto EM, Rubira AF, Muniz EC (2015) Polyelectrolyte complex containing silver nanoparticles with antitumor property on Caco-2 colon cancer cells. Int J Biol Macromol 79:748–755 S0141-8130(15)00377-3

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Tripathy D, Choudhary A, Aili PK, Chatterjee A, Singh IP, Banerjee UC (2015) Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook and its therapeutic evaluation as anticancer and antimicrobial agent. Mater Sci Eng C Mater Biol Appl 1(53):120–127

    Article  CAS  Google Scholar 

  • Mohamed S, Parayath NN, Taurin S, Greish K (2014) Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Ther Deliv 5(10):1101–1121

    Article  CAS  PubMed  Google Scholar 

  • Mohammad F, Yusof NA (2014) Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. J Colloid Interface Sci 434:89–97

    Article  CAS  PubMed  Google Scholar 

  • Mousa SA, Bharali DJ (2011) Nanotechnology-based detection and targeted therapy in cancer. Nano-Bio Paradigms Appl Cancers (Basel) 3(3):2888–2903

    Article  CAS  Google Scholar 

  • Office of Technology and Industrial Relations of the US National Cancer Institute (OTIR) (2006). https://www.cancer.gov/sites/nano

  • Ooya T, Lee J, Park K (2004) Hydrotropic dendrimers of generations 4 and 5: synthesis, characterization, and hydrotropic solubilization of paclitaxel. Bioconjug Chem 15:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C Mater Biol Appl 53:298–309

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  • Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1(1):37–51

    Article  CAS  PubMed  Google Scholar 

  • Reimer P, Tombach B (1998) Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 8(7):1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Schnyder A, Krahenbuhl S, Drewe J, Huwyler J (2005) Targeting of daunomycin using bio-tinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target 13(5):325–335

    Article  CAS  PubMed  Google Scholar 

  • Singh SY, Aher SS, Saudagar RB (2015) Ethosomes-novel drug delivery system. Res J Top Cosmet Sci 6(1):7–14

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  Google Scholar 

  • Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F (2001) Intracellular delivery mediated by an ethosomal carrier. Biomaterials 22:3053–3059

    Article  CAS  PubMed  Google Scholar 

  • Vanna S, Nicolino P, Mario S (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483

    Google Scholar 

  • Walve JR, Bakliwal SR, Rane BR, Pawar SP (2011) Transferomes: a surrogated carrier for transdermal drug delivery system. Int J Appl Biol Pharm Tech 2:1. ISSN 0976-4550

    Google Scholar 

  • Wang AZ, Bagalkot V, Vasilliou C, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima M, Langer R, Kantoff P, Bander N, Jon S, Farokhzad O (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. Chem Med Chem 3:1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li J, Wang Y et al (2009) HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 3:3165–3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HL, Rauth AM, Bendayan R, Wu XY (2007) In vivo evaluation of a new polymer– lipid hybrid nanoparticle (Pln) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm 65(3):300–308

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Yu C, Chu M (2011) A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int J Nanomedicine 6:807–813

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R (2002) Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med 47:292–297

    Article  PubMed  Google Scholar 

  • Zhang H, Hu H, Zhang H, Dai W, Wang X, Wang X, Zhang Q (2015) Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis. Nanoscale 7(24):10790–10800

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Pang B, Luehmann H, Detering L, Yang X, Sultan D, Harpstrite S, Sharma V, Cutler CS, Xia Y, Liu Y (2016) Gold nanoparticles doped with 199 Au atoms and their use for targeted cancer imaging by SPECT. Adv Healthc Mater 5(8):928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang L, Kai C, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2016) Drug delivery with carbon nanotubes for in vivo cancer treatment. 68 6652–6660 PMID:18701489

    Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi for providing financial assistance under Nano Mission program vide Sanction Letter # SR/NM/PG-01/2007 and University Grants Commission, New Delhi, India vide Sanction Letter # F-3-18/2009 dated 31st March, 2009 and Sanction Letter # F-3-4/2016/DRS-II (SAP-II) dated 1st April 2016 under Special Assistance Program (SAP) DRS-I and SAP DRS-II Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, M., Sheoran, P., Chaudhury, A. (2018). Application of Nanotechnology for Cancer Treatment. In: Gahlawat, S., Duhan, J., Salar, R., Siwach, P., Kumar, S., Kaur, P. (eds) Advances in Animal Biotechnology and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4702-2_10

Download citation

Publish with us

Policies and ethics