Skip to main content

Microbiology and Enzymology

  • Chapter
  • First Online:
Biohydrogen Production from Organic Wastes

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Microorganisms present in biological hydrogen production system can be categorized into hydrogen producers and non-hydrogen producers. Dark fermentative microorganisms are rich in species and widely distributed. In this chapter, the microbiology, biochemistry, and enzymology for biological hydrogen production were briefly introduced. The inoculum for dark fermentative hydrogen production system can be mixed cultures, like anaerobic sludge, compost, soil, leachate, etc., or pure cultures, like Clostridium sp., Enterobacter sp., etc. In the practical application, mixed cultures are more widely used because of the broader choice of feedstock, cheaper operation, and easier control. Through the metabolism of bacteria present in the system, complex polymers are hydrolyzed to glucose. Subsequently, pyruvate is produced via the glycolytic pathway to generate adenosine triphosphate (ATP). And then, according to hydrogen-producing strains present in the system (obligate anaerobes like Clostridia or facultative anaerobic enteric bacteria like E. coli.), pyruvate is involved in two different biochemical reactions leading to the formation of hydrogen. According to the main volatile fatty acids, widely accepted fermentation types include butyrate-type fermentation, propionate-type fermentation, ethanol-type fermentation, and mixed-type fermentation. The key enzyme involved in catalyzing H2 formation from protons or oxidation to protons is hydrogenase. According to the metal content of the active site, the hydrogenases can be categorized into three classes, [Fe]-, [FeFe]-, and [NiFe]-hydrogenases. To genetically and metabolically modify the hydrogenase is a very promising strategy to improve the biological hydrogen production from water or organic substances through optimizing the flow of reducing equivalents to it by redirecting the electron paths. Metabolic engineering could be used to modify metabolic pathways to increase the biological hydrogen production, to overcome limiting factors for hydrogen production in various systems by increasing the flow of electrons to hydrogen-producing pathways, increasing substrate utilization, and engineering more efficient and/or oxygen-resistant hydrogen-evolving enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah R, Djelal H, Amrane A, Sayed W, Fourcade F, Labasque T, Geneste F, Taha S, Floner D (2016) Dark fermentative hydrogen production by anaerobic sludge growing on glucose and ammonium resulting from nitrate electroreduction. Int J Hydrogen Energy 41(12):5445–5455

    Article  Google Scholar 

  • Abdeshahian P, Al-Shorgani NKN, Salih NKM, Shukor H, Kadier A, Hamid AA, Kalil MS (2014) The production of biohydrogen by a novel strain Clostridium sp. YM1 in dark fermentation process. Int J Hydrogen Energy 39(24):12524–12531

    Article  Google Scholar 

  • Abdul PM, Md. Jahim J, Harun S, Markom M, Hassan O, Mohammad AW, Asis AJ (2013) Biohydrogen production from pentose-rich oil palm empty fruit bunch molasses: a first trial. Int J Hydrogen Energy 38(35):15693–15699

    Google Scholar 

  • Abo-Hashesh M, Wang RF, Hallenbeck PC (2011) Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour Technol 102:8414–8422

    Article  Google Scholar 

  • Adav SS, Lee DJ, Wang AJ, Ren NQ (2009) Functional consortium for hydrogen production from cellobiose: Concentration-to-extinction approach. Bioresour Technol 100(9):2546–2550

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  • Alvarez-Guzmán CL, Oceguera-Contreras E, Ornelas-Salas JT, Balderas-Hernández VE, De León-Rodríguez A (2016) Biohydrogen production by the psychrophilic G088 strain using single carbohydrates as substrate. Int J Hydrogen Energy 41(19):8092–8100

    Article  Google Scholar 

  • An D, Li Q, Wang X, Yang H, Guo L (2014) Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int J Hydrogen Energy 39(35):19928–19936

    Article  Google Scholar 

  • Archana A, Sasikala C, Ramana CV, Arunasri K (2004) “Paraffin wax-overlay of pour plate”, a method for the isolation and enumeration of purple non-sulfur bacteria. J Microbiol Methods 59(3):423–425

    Article  Google Scholar 

  • Argun H, Dao S (2016) Hydrogen gas production from waste peach pulp by dark fermentation and electrohydrolysis. Int J Hydrogen Energy

    Google Scholar 

  • Baltazar CSA, Marques MC, Soares CM, Delacey AM, Pereira IAC, Matias PM (2015) Nickel-Iron-Selenium Hydrogenases—an Overview. Eur J Inorg Chem 2011(7):948–962

    Article  Google Scholar 

  • Batista AP, Moura P, Marques PASS, Ortigueira J, Alves L, Gouveia L (2014) Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 117, Part A: 537–543

    Google Scholar 

  • Beckers L, Hiligsmann S, Hamilton C, Masset J, Thonart P (2010) Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures. Biotechnol Agron Soc Environ 14(2):541–548

    Google Scholar 

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117

    Article  Google Scholar 

  • Beckers L, Masset J, Hamilton C, Delvigne F, Toye D, Crine M, Thonart P, Hiligsmann S (2015) Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009. Biochem Eng J 98:18–28

    Article  Google Scholar 

  • Bernstein HC, Carlson RP (2012) Microbia consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J 3(4):1–8

    Article  Google Scholar 

  • Bru K, Blazy V, Joulian C, Trably E, Latrille E, Quéméneur M, Dictor M (2012) Innovative CO2 pretreatment for enhancing biohydrogen production from the organic fraction of municipal solid waste (OFMSW). Int J Hydrogen Energy 37(19):14062–14071

    Article  Google Scholar 

  • Bundhoo MAZ, Mohee R (2016) Inhibition of dark fermentative bio-hydrogen production: A review. Int J Hydrogen Energy 41(16):6713–6733

    Article  Google Scholar 

  • Cai GQ, Jin B, Monis P, Saint C (2013a) A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnol Bioeng 110(1):338–342

    Article  Google Scholar 

  • Cai J, Wu Q, Wang G, Deng C (2013b) Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp. 6A-5 isolated from the sludge of a sugar mill. Renew Energy 59:202–209

    Article  Google Scholar 

  • Calusinska M, Hamilton C, Monsieurs P, Mathy G, Leys N, Franck F, Joris B, Thonart P, Hiligsmann S, Wilmotte A (2015) Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009. Boptechnol Biofuels 8(27)

    Google Scholar 

  • Chen WM, Tseng ZJ, Lee KS, Chang JS (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30(10):1063–1070

    Article  Google Scholar 

  • Chen D, Scopelliti R, Hu X (2010) Synthesis and reactivity of iron acyl complexes modeling the active site of [Fe]-Hydrogenase. J Am Chem Soc 132(3):928–929

    Article  Google Scholar 

  • Chen C, Chuang Y, Lin C, Lay C, Sen B (2012) Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrogen Energy 37(20):15540–15546

    Article  Google Scholar 

  • Cheng C, Chang J (2011) Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol 102(18):8628–8634

    Article  Google Scholar 

  • Cheng CH, Hung CH, Lee KS, Liau PY, Liang CM, Yang LH, Lin PJ, Lin CY (2008) Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. Int J Hydrogen Energy 33(19):5242–5249

    Article  Google Scholar 

  • Chong ML, Abdul Rahman N, Yee PL, Aziz SA, Rahim RA, Shirai Y, Hassan MA (2009) Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6. Int J Hydrogen Energy 34(21):8859–8865

    Google Scholar 

  • Chong ML, Rahman ANA, Rahim RA, Aziz SA, Shirai Y, Hassan MA (2009b) Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int J Hydrogen Energy 34(17):7475–7482

    Article  Google Scholar 

  • Chookaew T (2012) O-Thong S, Prasertsan P. Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int J Hydrogen Energy 37(18):13314–13322

    Article  Google Scholar 

  • Chu C, Wu S, Hsieh P, Lin C (2011a) Biohydrogen production from immobilized cells and suspended sludge systems with condensed molasses fermentation solubles. Int J Hydrogen Energy 36(21):14078–14085

    Article  Google Scholar 

  • Chu C, Wu S, Wu Y, Sen B, Hung C, Cheng C, Lin C (2011b) Phase holdups and microbial community in high-rate fermentative hydrogen bioreactors. Int J Hydrogen Energy 36(1):364–373

    Article  Google Scholar 

  • Chu C, Sen B, Lay C, Lin Y, Lin C (2012) Direct fermentation of sweet potato to produce maximal hydrogen and ethanol. Appl Energy 100:10–18

    Article  Google Scholar 

  • Cisneros-Pérez C, Carrillo-Reyes J, Celis LB, Alatriste-Mondragón F, Etchebehere C, Razo-Flores E (2015) Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. Int J Hydrogen Energy 40(19):6329–6339

    Article  Google Scholar 

  • Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37(1):1120–1124

    Article  Google Scholar 

  • Das D (2009) Advances in biohydrogen production processes: An approach towards commercialization. Int J Hydrogen Energy 34(17):7349–7357

    Article  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy 26(1):13–28

    Google Scholar 

  • Debowski M, Korzeniewska E, Filipkowska Z, Zielinski M, Kwiatkowski R (2014) Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. Int J Hydrogen Energy 39(5):1972–1978

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Google Scholar 

  • Fontecilla-Camps JC, Volbeda A (2013) [NiFe]-hydrogenases. Springer, New York

    Google Scholar 

  • Fritsch M, Hartmeier W, Chang J (2008) Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings. Int J Hydrogen Energy 33(22):6549–6557

    Article  Google Scholar 

  • García RE, Martínez VL, Franco JI, Curutchet G (2012) Selection of natural bacterial communities for the biological production of hydrogen. Int J Hydrogen Energy 37(13):10095–10100

    Article  Google Scholar 

  • Ghimire A, Sposito F, Frunzo L, Trably E, Escudié R, Pirozzi F, Lens PNL, Esposito G (2016) Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Waste Manag 50:55–64

    Article  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Guo L, Li X, Bo X, Yang Q, Zeng G, Liao D, Liu J (2008) Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99(9):3651–3658

    Article  Google Scholar 

  • Hallenbeck PC, Ghosh D, Abo-Hashesh M, Wang R (2011) Metabolic engineering for enhanced biofuels production with emphasis on the biological production of hydrogen. In: James CT (ed) Advances in chemistry research, vol 6. Nova Publishers, pp 125–154

    Google Scholar 

  • Hamilton C, Hiligsmann S, Beckers L, Masset J, Wilmotte A, Thonart P (2010) Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode. Int J Hydrogen Energy 35(3):1089–1098

    Article  Google Scholar 

  • Han W, Liu DN, Shi YW, Tang JH, Li YF, Ren NQ (2015) Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresour Technol 180:54–58

    Article  Google Scholar 

  • Harun I, Jahim JM, Anuar N, Hassan O (2012) Hydrogen production performance by Enterobacter cloacae KBH3 isolated from termite guts. Int J Hydrogen Energy 37(20):15052–15061

    Article  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27(PII S0360-3199(02)00090-311-12):1339–1347

    Google Scholar 

  • Heyndrickx M, Devos P, Deley J (1991) Fermentation of D-xylose by Clostridium butyricum LMG-1213T1 in chemostats. Enzym Microbial Technol 13(11):893–897

    Article  Google Scholar 

  • Hiligsmann S, Beckers L, Masset J, Hamilton C, Thonart P (2014) Improvement of fermentative biohydrogen production by Clostridium butyricum CWBI1009 in sequenced-batch, horizontal fixed bed and biodisc-like anaerobic reactors with biomass retention. Int J Hydrogen Energy 39(13):6899–6911

    Article  Google Scholar 

  • Hu CC, Giannis A, Chen CL, Qi W, Wang JY (2013) Comparative study of biohydrogen production by four dark fermentative bacteria. Int J Hydrogen Energy 38(35):15686–15692

    Article  Google Scholar 

  • Hung CH, Chang YT, Chang YJ (2011a) Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—A review. Bioresour Technol 102(18):8437–8444

    Article  Google Scholar 

  • Hung CH, Cheng CH, Guan DW, Wang ST, Hsu SC, Liang CM, Lin CY (2011b) Interactions between Clostridium sp. and other facultative anaerobes in a self-formed granular sludge hydrogen-producing bioreactor. Int J Hydrogen Energy 36(14):8704–8711

    Article  Google Scholar 

  • Jenol MA, Ibrahim MF, Yee PL, Salleh MM, Abd-Aziz S (2014) Sago biomass as a sustainable source for biohydrogen production by Clostridium butyricum A1. BioResources 9(1):1007–1026

    Google Scholar 

  • Jeong D, Cho S, Shin H, Jung K (2013) Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production. Bioresour Technol 139:393–396

    Article  Google Scholar 

  • Jo JH, Lee DS, Park D, Park JM (2008) Statistical optimization of key process variables for enhanced hydrogen production by newly isolated Clostridium tyrobutyricum JM1. Int J Hydrogen Energy 33(19):5176–5183

    Article  Google Scholar 

  • Jung K, Kim W, Park GW, Seo C, Chang HN, Kim Y (2015) Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities. Appl Microbiol Biotechnol 99(7):3327–3337

    Article  Google Scholar 

  • Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: Optimization of process parameters. Int J Hydrogen Energy 37(4):3160–3168

    Article  Google Scholar 

  • Justice A (2008) Structural and spectroscopic models of the [FeFe]-hydrogenase enzyme. Dissertations and Theses—Gradworks 84(3):170–175

    Google Scholar 

  • Kannaiah Goud R, Venkata Mohan S (2012) Regulating biohydrogen production from wastewater by applying organic load-shock: change in the microbial community structure and bio-electrochemical behavior over long-term operation. Int J Hydrogen Energy 37(23):17763–17777.

    Google Scholar 

  • Karube I, Matsunaga T, Tsuru S, Suzuki S (1976) Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochem Biophys Acta 444(2):338–343

    Article  Google Scholar 

  • Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431

    Article  Google Scholar 

  • Kim MS, Baek JS, Yun YS, Junsim SJ, Park S, Kim SC (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31(6):812–816

    Article  Google Scholar 

  • Kivisto A, Santala V, Karp M (2013) Non-sterile process for biohydrogen and 1,3-propanediol production from raw glycerol. Int J Hydrogen Energy 38(27):11749–11755

    Article  Google Scholar 

  • Kotay SM, Das D (2009) Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int J Hydrogen Energy 34(17):7489–7496

    Article  Google Scholar 

  • Lay CH, Wu JH, Hsiao CL, Chang JJ, Chen CC, Lin CY (2010) Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. Int J Hydrogen Energy 35(24):13445–13451

    Article  Google Scholar 

  • Lay C, Lin H, Sen B, Chu C, Lin C (2012) Simultaneous hydrogen and ethanol production from sweet potato via dark fermentation. J Clean Prod 27:155–164

    Article  Google Scholar 

  • Lee K, Tseng T, Liu Y, Hsiao Y (2012) Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrogen Energy 37(20):15556–15562

    Article  Google Scholar 

  • Lee J, Jung N, Shin J, Park JH, Sung Y, Park TH (2014) Enhancement of hydrogen production and power density in a bio-reformed formic acid fuel cell (BrFAFC) using genetically modified Enterobacter asburiae SNU-1. Int J Hydrogen Energy 39(22):11731–11737

    Article  Google Scholar 

  • Li Q, Liu CZ (2012) Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int J Hydrogen Energy 37(14):10648–10654

    Article  Google Scholar 

  • Li Y, Chu C, Wu S, Tsai C, Wang C, Hung C, Lin C (2012a) Feasible pretreatment of textile wastewater for dark fermentative hydrogen production. Int J Hydrogen Energy 37(20):15511–15517

    Article  Google Scholar 

  • Li Y, Nissilä ME, Wu S, Lin C, Puhakka JA (2012b) Silage as source of bacteria and electrons for dark fermentative hydrogen production. Int J Hydrogen Energy 37(20):15518–15524

    Article  Google Scholar 

  • Li D, Jiao C, He W, Yan Z, Yuan Y, Li Z, Guo Y, Liu X (2016) Comparison of micro-aerobic and anaerobic fermentative hydrogen production from corn straw. Int J Hydrogen Energy 41(12):5456–5464

    Article  Google Scholar 

  • Lin HY, Chen ZL, Megharaj M, Naidu R (2013) Biodegradation of TNT using Bacillus mycoides immobilized in PVA-sodium alginate-kaolin. Appl Clay Sci 83–84:336–342

    Article  Google Scholar 

  • Liu H, Wang G, Zhu D, Pan G (2009) Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods. Int J Hydrogen Energy 34(24):9696–9701

    Article  Google Scholar 

  • Long Z, Huang Y, Cai Z, Cong W, Ouyang F (2004) Immobilization of Acidithiobacillus ferrooxidans by a PVA–boric acid method for ferrous sulphate oxidation. Process Biochem 39(12):2129–2133

    Article  Google Scholar 

  • Lu W, Wen J, Chen Y, Sun B, Jia X, Liu M, Caiyin Q (2007) Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. Int J Hydrogen Energy 32(8):1059–1066

    Article  Google Scholar 

  • Lu Y, Lai QH, Chong Z, Zhao HX, Ma K, Zhao XB, Chen HZ, Liu DH, Xing XH (2009) Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresour Technol 100(12):2889–2895

    Article  Google Scholar 

  • Mishra P, Das D (2014) Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. Int J Hydrogen Energy 39(14):7496–7507

    Article  Google Scholar 

  • Nicolet Y, Cavazza C, Fontecilla-Camps JC (2002) Fe-only hydrogenases: structure, function and evolution. J Inorg Biochem 91(1):1–8

    Article  Google Scholar 

  • Nissilä ME, Tähti HP, Rintala JA, Puhakka JA (2011) Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: Effects of different heat treatments. Int J Hydrogen Energy 36(2):1482–1490

    Article  Google Scholar 

  • Oh Y, Seol E, Lee EY, Park S (2002) Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas Palustris P4. Int J Hydrogen Energy 27(11–12):1373–1379

    Article  Google Scholar 

  • Oh Y, Seol E, Kim JR, Park S (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy 28(12):1353–1359

    Article  Google Scholar 

  • Ortigueira J, Alves L, Gouveia L, Moura P (2015) Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 153:128–134

    Article  Google Scholar 

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy 33(4):1204–1214

    Google Scholar 

  • O-Thong S, Prasertsan P, Birkeland N (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100(2):909–918

    Google Scholar 

  • Pachapur V, Kutty P, Brar S, Ramirez A (2016) Enrichment of secondary wastewater sludge for production of hydrogen from crude glycerol and comparative evaluation of mono-, co- and mixed-culture systems. Int J Mol Sci 17(1):92

    Article  Google Scholar 

  • Pan C, Fan Y, Zhao P, Hou H (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energy 33(20):5383–5391

    Article  Google Scholar 

  • Patel AK, Debroy A, Sharma S, Saini R, Mathur A, Gupta R, Tuli DK (2015) Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour Technol 175:291–297

    Article  Google Scholar 

  • Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 33(19):5256–5265

    Article  Google Scholar 

  • Plangklang P, Reungsang A, Pattra S (2012) Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. Int J Hydrogen Energy 37(20):15525–15532

    Article  Google Scholar 

  • Rafieenia R, Chaganti SR (2015) Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer. Bioresour Technol 175:613–618

    Article  Google Scholar 

  • Ren NQ, Guo W, Wang X, Xiang W, Liu B, Wang X, Ding J, Chen Z (2008a) Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int J Hydrogen Energy 33(16):4318–4324

    Article  Google Scholar 

  • Ren NQ, Cao GL, Wang AJ, Lee DJ, Guo WQ, Zhu YH (2008b) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124–6132

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    Google Scholar 

  • Schleucher J, Vanderveer P, Markley JL, Sharkey TD (1999) Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant, Cell Environ 22(5):525–533

    Article  Google Scholar 

  • Seppälä JJ, Puhakka JA, Yli-Harja O, Karp MT, Santala V (2011) Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. Int J Hydrogen Energy 36(17):10701–10708

    Article  Google Scholar 

  • Shin JH (2007) Hyun Yoon J, Eun KA, Kim MS, Sim SJ, Park TH. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. Int J Hydrogen Energy 32(2):192–199

    Article  Google Scholar 

  • Singh S, Sarma PM, Lal B (2014) Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int J Hydrogen Energy 39(9):4206–4214

    Article  Google Scholar 

  • Sinha P, Pandey A (2014) Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int J Hydrogen Energy 39(14):7518–7525

    Article  Google Scholar 

  • Song Z, Dai Y, Fan Q, Li X, Fan Y, Hou H (2012a) Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int J Hydrogen Energy 37(7):5631–5636

    Article  Google Scholar 

  • Song Z, Wang Z, Wu L, Fan Y, Hou H (2012b) Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrogen Energy 37(8):6554–6561

    Article  Google Scholar 

  • Song ZX, Li WW, Li XH, Dai Y, Peng XX, Fan YT, Hou HW (2013) Isolation and characterization of a new hydrogen-producing strain Bacillus sp FS2011. Int J Hydrogen Energy 38(8):3206–3212

    Article  Google Scholar 

  • Sun CY, Hao P, Qqin BD, Wang B, Di XY, Li YF (2016) Co-production of hydrogen and methane from herbal medicine wastewater by a combined UASB system with immobilized sludge (H-2 production) and UASB system with suspended sludge (CH4 production). Water Sci Technol 73:130–136

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  Google Scholar 

  • Vogt S, Lyon EJ, Shima S, Thauer RK (2008) The exchange activities of [Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J Biol Inorg Chem 13(1):97–106

    Article  Google Scholar 

  • Volbeda A, Charon M, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. 373(6515):580–587

    Google Scholar 

  • Wang JL, Wan W (2008) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 33(12):2934–2941

    Article  Google Scholar 

  • Wang JL, Wan W (2009) Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy 34(2):799–811

    Article  Google Scholar 

  • Wang XJ, Ren NQ, Xiang WS, Guo WQ (2007) Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. Int J Hydrogen Energy 32(6):748–754

    Article  Google Scholar 

  • Wang X, Monis PT, Saint CP, Jin B (2009) Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5. Int J Hydrogen Energy 34(2):791–798

    Article  Google Scholar 

  • Watanabe H, Yoshino H (2010) Biohydrogen using leachate from an industrial waste landfill as inoculum. Renew Energ 35(5):921–924

    Google Scholar 

  • Wong YM, Juan JC, Ting A, Wu TY (2014) High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge. Energy 72:628–635

    Article  Google Scholar 

  • Wu SY, Chu CY, Yeh WZ (2013) Aspect ratio effect of bioreactor on fermentative hydrogen production with immobilized sludge. Int J Hydrogen Energy 38:6154–6160

    Article  Google Scholar 

  • Xie GJ, Feng LB, Ren NQ, Ding J, Liu C, Xing DF, Qian GW, Ren HY (2010) Control strategies for hydrogen production through co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 35(5):1929–1935

    Article  Google Scholar 

  • Xing Y, Fan S, Zhang J, Fan Y, Hou H (2011) Enhanced bio-hydrogen production from corn stalk by anaerobic fermentation using response surface methodology. Int J Hydrogen Energy 36(20):12770–12779

    Article  Google Scholar 

  • Yin YN, Wang J (2016) Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum. Bioresour Technol 200:217–222

    Article  Google Scholar 

  • Yin YN, Hu J, Wang J (2014a) Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods. Int J Hydrogen Energy 39(25):13550–13556

    Article  Google Scholar 

  • Yin YN, Hu J, Wang J (2014b) Gamma irradiation as a pretreatment method for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 39(25):13543–13549

    Article  Google Scholar 

  • Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg 22(5):389–395

    Article  Google Scholar 

  • Zeidan AA, Van Niel EWJ (2009) Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. Int J Hydrogen Energy 34(10):4524–4528

    Article  Google Scholar 

  • Zhang LS, Wu WZ, Wang JL (2007) Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. J Environ Sci 19(11):1293–1297

    Article  Google Scholar 

  • Zhang J, Li Y, Zheng H, Fan Y, Hou H (2015a) Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol 192:60–67

    Article  Google Scholar 

  • Zhang L, Chung JS, Ren NQ, Sun R (2015b) Effects of the ecological factors on hydrogen production and [Fe–Fe]-hydrogenase activity in Ethanoligenens harbinense YUAN-3. Int J Hydrogen Energy 40(21):6792–6797

    Article  Google Scholar 

  • Zhao X, Xing D, Fu N, Liu B, Ren N (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol 102(18):8432–8436

    Article  Google Scholar 

  • Zhu HG, Béland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 31(14):1980–1988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, J., Yin, Y. (2017). Microbiology and Enzymology. In: Biohydrogen Production from Organic Wastes. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4675-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4675-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4674-2

  • Online ISBN: 978-981-10-4675-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics