Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 587 Accesses

Abstract

In this dissertation, dual-polarization two-port IFOG is investigated, which breaks through the limitation of the conventional “minimal scheme.” This chapter introduces the research background and related researches of this dissertation. Basic theories of the interferometric fiber-optic gyroscope (IFOG) are reviewed, and then former IFOG designs considering dual-polarization operation are discussed. At the end of this chapter, the main contributions of this dissertation are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Lefevre. The Fiber-Optic Gyroscope. (Artech House Publishers, 1993)

    Google Scholar 

  2. G. Zhang, The Princeiples and Technologies of Fiber-Optic Gyroscope. (National Defense Industry Press, 2008)

    Google Scholar 

  3. V. Vali, R.W. Shorthill, Fiber ring interferometer. Appl Optics 15, 1099–1100 (1976)

    Google Scholar 

  4. S.J. Sanders, L.K. Strandjord, D. Mead Fiber optic gyro technology trends-a Honeywell perspective, in Optical Fiber Sensors Conference Technical Digest, (2002), pp. 5–8

    Google Scholar 

  5. K. Carr, R. Greer, B.M. Marvin, G. Scott, Navy testing of the iXBlue MARINS Fiber Optic Gyroscope (FOG) Inertial Navigation system (INS), in Position, Location and Navigation Symposium, IEEE, (2014), pp. 1392–1408

    Google Scholar 

  6. E.J. Post, Sagnac. Effect. Rev. Mod. Phys. 39, 475–493 (1967)

    Article  Google Scholar 

  7. H.J. Arditty, H.C. Lefevre, Sagnac effect in fiber gyroscopes. Opt. Lett. 6, 401–403 (1981)

    Article  Google Scholar 

  8. R.A. Bergh, H.C. Lefevre, H.J. Shaw, An overview of fiber-optic gyroscopes. J. Lightwave Technol. 2, 91–107 (1984)

    Article  Google Scholar 

  9. G.B. Malykin, The Sagnac effect: correct and incorrect explanations. Phys. Usp. 43, 1229–1252 (2000)

    Article  MathSciNet  Google Scholar 

  10. T.L. Gustavson, P. Bouyer, M.A. Kasevich, Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046 (1997)

    Article  Google Scholar 

  11. R.A. Bergh, H.C. Lefevre, H.J. Shaw, Compensation of the optical Kerr effect in fiber-optic gyroscopes. Opt. Lett. 7, 282–284 (1982)

    Article  Google Scholar 

  12. H.C. Lefevre, R.A. Bergh, H.J. Shaw, All-fiber gyroscope with inertial-navigation short-term sensitivity. Opt. Lett. 7, 454–456 (1982)

    Article  Google Scholar 

  13. R.A. Bergh, H.C. Lefevre, H.J. Shaw, All-single-mode fiber-optic gyroscope. Opt. Lett. 6, 198–200 (1981)

    Article  Google Scholar 

  14. R.A. Bergh, H.C. Lefevre, H.J. Shaw, All-single-mode fiber-optic gyroscope with long-term stability. Opt. Lett. 6, 502–504 (1981)

    Article  Google Scholar 

  15. I.A. Andronova, G.B. Malykin, Physical problems of fiber gyroscopy based on the Sagnac effect. Phys. Usp. 45, 793–817 (2007)

    Article  Google Scholar 

  16. E.C. Kintner, Polarization control in optical-fiber gyroscopes. Opt. Lett. 6, 154–156 (1981)

    Article  Google Scholar 

  17. G.B. Malykin, On the ultimate sensitivity of fiber-optic gyroscopes. Tech. Phys. 54, 415–418 (2009)

    Article  Google Scholar 

  18. Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, Z. Li, All-depolarized Interferometric fiber-optic gyroscope based on optical compensation. IEEE Photon. J. 6, 7100208 (2014)

    Google Scholar 

  19. S.K. Sheem, Fiber-optic gyroscope with [3 × 3] directional coupler. Appl. Phys. Lett. 37, 869–871 (1980)

    Article  Google Scholar 

  20. B.Y. Kim, H.J. Shaw, Gated phase-modulation approach to fiber-optic gyroscope with linearized scale factor. Opt. Lett. 9, 375–377 (1984)

    Article  Google Scholar 

  21. B.Y. Kim, H.J. Shaw, Phase-reading, all-fiber-optic gyroscope. Opt. Lett. 9, 378–380 (1984)

    Article  Google Scholar 

  22. W. Jin, B. Culshaw, Frequency division multiplexing of fiber-optic gyroscopes. J. Lightwave Technol. 10, 1473–1480 (1992)

    Article  Google Scholar 

  23. M. Komachiya, H. Sonobe, S. Oho, K. Ohbu, T. Yuhara, H. Iizuka, Secondary-phase-modulation method for open-loop fiber-optic gyroscopes. Appl. Optics. 35, 3719–3725 (1996)

    Article  Google Scholar 

  24. R.P. Moeller, W.K. Burns, N.J. Frigo, Open-loop output and scale factor stability in a fiber-optic gyroscope. J. Lightwave Technol. 7, 262–269 (1989)

    Article  Google Scholar 

  25. A. Ebberg, G. Schiffner, Closed-loop fiber-optic gyroscope with a sawtooth phase-modulated feedback. Opt. Lett. 10, 300–302 (1985)

    Article  Google Scholar 

  26. M. Oh, M. Chung, Y. Kim, Open-loop fiber-optic gyroscope using intensity-modulated source and phase modulation. Opt. Lett. 13, 521–523 (1988)

    Article  Google Scholar 

  27. P.Y. Chienand, C.L. Pan, Deep phase-modulation approach to an open-loop fiber optic gyroscope. IEEE Photonic Tech. L 3, 284–286 (1991)

    Article  Google Scholar 

  28. R. Ulrich, M. Johnson, Fiber-ring interferometer—polarization analysis. Opt. Lett. 4, 152–154 (1979)

    Article  Google Scholar 

  29. R. Ulrich, Fiber-optic rotation sensing with low drift. Opt. Lett. 5, 173–175 (1980)

    Article  Google Scholar 

  30. W.K. Burns, R.P. Moeller, C.A. Villarruel, M. Abebe, Fiber-optic gyroscope with polarization-holding fiber. Opt. Lett. 8, 540–542 (1983)

    Article  Google Scholar 

  31. W. Burns, C. Chen. Fiber-optic gyroscopes with broad-band sources. J. Lightwave Technol. LT-1, 98–105 (1983)

    Google Scholar 

  32. S.L.A. Carrara, B.Y. Kim, H.J. Shaw, Bias drift reduction in polarization-maintaining fiber gyroscope. Opt. Lett. 12, 214–216 (1987)

    Article  Google Scholar 

  33. D. Kim, J. Kang, Sagnac loop interferometer based on polarization maintaining photonic crystal fiber withreduced temperature sensitivity. Opt. Express 12, 4490–4495 (2004)

    Article  Google Scholar 

  34. S. Du, Z. Sun, Z. Zhang, C. Zhang, Noise analysis of solid-core polarization-maintaining photonic interferometer fiber optic gyroscope. Opt. Rev. 19, 284–286 (2011)

    Article  Google Scholar 

  35. K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Low-drift fiber gyro using a superluminescent diode. Electron. Lett. 17, 352–353 (1981)

    Article  Google Scholar 

  36. R.J. Fredricks, R. Ulrich, Phase error-bounds of fiber gyro with imperfect polarizer depolarizer. Electron. Lett. 20, 330–332 (1984)

    Article  Google Scholar 

  37. E. Jones, J.W. Parker, Bias reduction by polarization dispersion in the fibre-optic gyroscope. Electron. Lett. 22, 54–56 (1986)

    Article  Google Scholar 

  38. J.N. Blake, Magnetic field sensitivity of depolarized fiber optic gyros, in Microlithography’91, San Jose, CA, (International Society for Optics and Photonics, 1991), pp. 81–86

    Google Scholar 

  39. B. Szafraniec, J. Blake, Polarization modulation errors in all-fiber depolarized gyroscopes. J. Lightwave Technol. 12, 1679–1684 (1994)

    Article  Google Scholar 

  40. B. Szafraniec, G.A. Sanders, Theory of polarization evolution in interferometric fiber-optic depolarized gyros. J. Lightwave Technol. 17, 579–590 (1999)

    Article  Google Scholar 

  41. A. Lompado, J.C. Reinhardt, L.C. Heaton, J.L. Williams, P.B. Ruffin, Full Stokes polarimeter for characterization of fiber optic gyroscope coils. Opt. Express 17, 8370–8381 (2009)

    Article  Google Scholar 

  42. O. Celikel, F. Sametoglu, Assessment of magneto-optic Faraday effect-based drift on interferometric single-mode fiber optic gyroscope (IFOG) as a function of variable degree of polarization (DOP). Meas. Sci. Technol. 23, 025104 (2012)

    Article  Google Scholar 

  43. B. Szafraniec, J.R. Feth, R.A. Bergh, J.N. Blake. Performance improvements in depolarized fiber gyros, in European Symposium on Optics for Environmental and Public Safety, (International Society for Optics and Photonics, 1995) pp. 37–48

    Google Scholar 

  44. J.N. Blake, B. Szafraniec, J.R. Feth, K. Diamond, Progress in low cost interferometric fiber optic gyros, in Aerospace Sensing, (International Society for Optics and Photonics, 1992), pp. 188-192

    Google Scholar 

  45. J. Blake, B. Szafraniec, J. Feth, Partially polarized fiber-optic gyro. Opt. Lett. 21, 1192–1194 (1996)

    Article  Google Scholar 

  46. R. Ulrich, S.C. Rashleigh, W. Eickhoff, Bending-induced birefringence in single-mode fibers. Opt. Lett. 5, 273–275 (1980)

    Article  Google Scholar 

  47. G.A. Pavlath, H.J. Shaw, Birefringence and polarization effects in fiber gyroscopes. Appl Optics 21, 1752–1757 (1982)

    Article  Google Scholar 

  48. W.K. Burns, R.P. Moeller, C.A. Willarruel, Observation of low noise in a passive fibre gyroscope. Electron. Lett. 18, 648–650 (1982)

    Article  Google Scholar 

  49. S. Tai, K. Kojima, S. Noda, K. Kyuma, K. Hamanaka, T. Nakayama, All-fibre gyroscope using depolarised superluminescent diode. Electron. Lett. 22, 546–547 (1986)

    Article  Google Scholar 

  50. W.K. Burns, A.D. Kersey, Fiber-optic gyroscopes with depolarized light. J. Lightwave Technol. 10, 992–999 (1992)

    Article  Google Scholar 

  51. I.A. Andronova, V.M. Gelikonov, G.V. Gelikonov, All-fiber optical gyroscopes on orthogonal polarizations. Radiophys Quant Electron 41, 980–988 (1998)

    Article  Google Scholar 

  52. I.A. Andronova, G.V. Gelikonov, G.B. Malykin. Effects of polarization nonreciprocity in fiber ring interferometers, in ICONO’98: Quantum Optics, Interference Phenomena in Atomic Systems, and High-precision Measurements, 1998, Moscow, Russia, vol. 3736, pp. 423–425

    Google Scholar 

  53. I.A. Andronova, G.V. Gelikonov, G.B. Malykin, Characteristic features of the effects of the polarisation nonreciprocity of fibre ring interferometers. Quant. Electron. 29, 271–275 (1999)

    Article  Google Scholar 

  54. V.M. Gelikonov, G.V. Gelikonov, I.A. Andronova, Double-polarization fiber ring interferometer based on a single-mode isotropic fiber for gyroscopy. Radiophys Quant. Electron. 51, 296–300 (2008)

    Article  Google Scholar 

  55. C.R. Doerr, K. Tamura, M. Shirasaki, H.A. Haus, E.P. Ippen, Orthogonal polarization fiber gyroscope with increased stability and resolution. Appl. Optics. 33, 8062–8068 (1994)

    Article  Google Scholar 

  56. M.A. Lynch, Orthogonal polarization fiber optic gyroscope with improved bias drift. Dissertation Massachusetts Institute of Technology (1999)

    Google Scholar 

  57. J. Zheng, Birefringent fibre frequency-modulated continuous-wave Sagnac gyroscope. Electron. Lett. 40, 1520–1522 (2004)

    Article  Google Scholar 

  58. S.W. Lloyd, V. Dangui, M.J.F. Digonnet, S. Fan, G.S. Kino, Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes. Opt. Lett. 35, 121–123 (2010)

    Article  Google Scholar 

  59. C. Li, C. Zhang, N. Song, H. Xu, Polarization-maintaining fiber loop with double optical length and its application to fiber optic gyroscope. Chin. Opt. Lett. 9, 020604 (2011)

    Article  Google Scholar 

  60. K. Zhou, S. Pan, S. Liu, K. Hu, Fiber gyroscope with a double sensitivity employing a polarization splitter. Opt. Lett. 38, 1337–1339 (2013)

    Article  Google Scholar 

  61. C. Zhang, F. Teng, J. Jin, X. Xu, N. S, Z. Zhang, Reduction of nonreciprocal errors in a differential interferometric fiber optical gyroscope using optically differential processing. Sci. China Tech. Sci. 57, 1631–1635 (2014)

    Article  Google Scholar 

  62. X. Xu, F. Teng, C. Zhang, N. Song, J. Jin, Investigation of polarization nonreciprocity in dual-interference fiber optical gyroscope. Opt. Rev. 21, 486–489 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinan Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, Z. (2017). Introduction. In: Dual-Polarization Two-Port Fiber-Optic Gyroscope. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-2836-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2836-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2835-9

  • Online ISBN: 978-981-10-2836-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics