Skip to main content

Human Serum Albumin in Blood Detoxification Treatment

  • Chapter
  • First Online:
Albumin in Medicine

Abstract

Human serum albumin (HSA) is known to bind a broad spectrum of endogenous and exogenous substances. The ligand-binding property of albumin has been utilized to remove endogenous toxins in extracorporeal blood detoxification methods such as single-pass albumin dialysis (SPAD), fractionated plasma separation and adsorption (FPSA), Prometheus®, and molecular adsorbent recirculating system (MARS). Production of recombinant HSA including individual domains has been successfully attempted by a number of researchers. The albumin domains retain similar structural characteristics of the HSA. The ligand-binding properties of albumin domains are identical to those of HSA but with lower binding affinity and percentage for most of the ligands studied. The albumin domains have an increased elimination profile compared to that of the HSA. Molecular modification of the albumin domains through site-directed mutagenesis for strengthening toxin binding is a feasible approach for improving the efficiency and effectiveness of blood detoxification treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors CE, Wennberg RP (2004) Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 28:334–339

    Article  PubMed  Google Scholar 

  • Allen NM, Mohammad F, Foran A, Corcoran D, Clarke T (2009) Severe hyperbilirubinaemia and kernicterus: more caution is needed in newborn jaundice surveillance. Ir Med J 102:228–229

    CAS  PubMed  Google Scholar 

  • Anraku M, Takeuchi K, Watanabe H, Kadowaki D, Kitamura K, Tomita K, Kuniyasu A, Suenaga A, Maruyama T, Otagiri M (2011) Quantitative analysis of cysteine-34 on the antioxidative properties of human serum albumin in hemodialysis patients. J Pharm Sci 100:3968–3976

    Article  CAS  PubMed  Google Scholar 

  • Bertucci C, Nanni B, Raffaelli A, Salvadori P (1998) Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties. J Pharm Biomed Anal 18:127–136

    Article  CAS  PubMed  Google Scholar 

  • Cassio D, Weiss MC, Ott MO, Sala-Trepat JM, Fries J, Erdos T (1981) Expression of the albumin gene in rat hepatoma cells and their dedifferentiated variants. Cell 27:351–358

    Article  CAS  PubMed  Google Scholar 

  • Chuang VT, Otagiri M (2007) Recombinant human serum albumin. Drugs Today (Barc) 43:547–561

    Article  CAS  Google Scholar 

  • Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5:827–835

    Article  CAS  PubMed  Google Scholar 

  • Curry S, Brick P, Franks NP (1999) Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta 1441:131–140

    Article  CAS  PubMed  Google Scholar 

  • Dixon JW, Sarkar B (1972) Absence of a specific copper(II) binding site in dog albumin is due to amino acid mutation in position 3. Biochem Biophys Res Commun 48:197–200

    Article  CAS  PubMed  Google Scholar 

  • Dockal M, Carter DC, Ruker F (1999) The three recombinant domains of human serum albumin. Structural characterization and ligand binding properties. J Biol Chem 274:29303–29310

    Article  CAS  PubMed  Google Scholar 

  • Dockal M, Carter DC, Ruker F (2000a) Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275:3042–3050

    Article  CAS  PubMed  Google Scholar 

  • Dockal M, Chang M, Carter DC, Ruker F (2000b) Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site. Protein Sci 9:1455–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkenhagen D, Strobl W, Vogt G, Schrefl A, Linsberger I, Gerner FJ, Schoenhofen M (1999) Fractionated plasma separation and adsorption system: a novel system for blood purification to remove albumin bound substances. Artif Organs 23:81–86

    Article  CAS  PubMed  Google Scholar 

  • Fleer R, Yeh P, Amellal N, Maury I, Fournier A, Bacchetta F, Baduel P, Jung G, L’Hote H, Becquart J et al (1991) Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology (N Y) 9:968–975

    Article  CAS  Google Scholar 

  • Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    Article  CAS  PubMed  Google Scholar 

  • Gimson AE, Braude S, Mellon PJ, Canalese J, Williams R (1982) Earlier charcoal haemoperfusion in fulminant hepatic failure. Lancet 2:681–683

    Article  CAS  PubMed  Google Scholar 

  • Hoofnagle JH, Carithers RL Jr, Shapiro C, Ascher N (1995) Fulminant hepatic failure: summary of a workshop. Hepatology 21:240–252

    CAS  PubMed  Google Scholar 

  • Hughes RD, Pucknell A, Routley D, Langley PG, Wendon JA, Williams R (1994) Evaluation of the BioLogic-DT sorbent-suspension dialyser in patients with fulminant hepatic failure. Int J Artif Organs 17:657–662

    CAS  PubMed  Google Scholar 

  • Ikegaya K, Hirose M, Ohmura T, Nokihara K (1997) Complete determination of disulfide forms of purified recombinant human serum albumin, secreted by the yeast Pichia pastoris. Anal Chem 69:1986–1991

    Article  CAS  PubMed  Google Scholar 

  • Ishima Y, Akaike T, Kragh-Hansen U, Hiroyama S, Sawa T, Suenaga A, Maruyama T, Kai T, Otagiri M (2008) S-nitrosylated human serum albumin-mediated cytoprotective activity is enhanced by fatty acid binding. J Biol Chem 283:34966–34975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen J (1969) Binding of bilirubin to human serum albumin – determination of the dissociation constants. FEBS Lett 5:112–114

    Article  CAS  PubMed  Google Scholar 

  • Jalan R, Williams R (2002) Acute-on-chronic liver failure: pathophysiological basis of therapeutic options. Blood Purif 20:252–261

    Article  PubMed  Google Scholar 

  • Keller F, Heinze H, Jochimsen F, Passfall J, Schuppan D, Buttner P (1995) Risk factors and outcome of 107 patients with decompensated liver disease and acute renal failure (including 26 patients with hepatorenal syndrome): the role of hemodialysis. Ren Fail 17:135–146

    Article  CAS  PubMed  Google Scholar 

  • Khan MM, Muzammil S, Tayyab S (2000) Role of salt bridge(s) in the binding and photoconversion of bilirubin bound to high affinity site on human serum albumin. Biochim Biophys Acta – Protein Struct Mol Enzymol 1479:103–113

    Article  CAS  Google Scholar 

  • Kiley JE, Pender JC, Welch HF, Welch CS (1958) Ammonia intoxication treated by hemodialysis. N Engl J Med 259:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen T, Pettersson AF, Drube L, Kurtzhals P, Jonassen I, Havelund S, Hansen PH, Markussen J (1998) Secretory expression of human albumin domains in Saccharomyces cerevisiae and their binding of myristic acid and an acylated insulin analogue. Protein Expr Purif 13:163–169

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nakamura N, Sumi A, Ohmura T, Yokoyama K (1998) The development of recombinant human serum albumin. Ther Apher 2:257–262

    Article  CAS  PubMed  Google Scholar 

  • Kondrup J, Almdal T, Vilstrup H, Tygstrup N (1992) High volume plasma exchange in fulminant hepatic failure. Int J Artif Organs 15:669–676

    CAS  PubMed  Google Scholar 

  • Larsen FS, Hansen BA, Jorgensen LG, Secher NH, Kirkegaard P, Tygstrup N (1994) High-volume plasmapheresis and acute liver transplantation in fulminant hepatic failure. Transplant Proc 26:1788

    CAS  PubMed  Google Scholar 

  • Liu R, Yang J, Ha CE, Bhagavan NV, Eckenhoff RG (2005) Truncated human serum albumin retains general anaesthetic binding activity. Biochem J 388:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losser MR, Payen D (1996) Mechanisms of liver damage. Semin Liver Dis 16:357–367

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Gunasekera AH, Fesik SW (2000) Expression, refolding, and isotopic labeling of human serum albumin domains for NMR spectroscopy. Protein Expr Purif 20:492–499

    Article  CAS  PubMed  Google Scholar 

  • Matsushita S, Isima Y, Chuang VT, Watanabe H, Tanase S, Maruyama T, Otagiri M (2004) Functional analysis of recombinant human serum albumin domains for pharmaceutical applications. Pharm Res 21:1924–1932

    Article  CAS  PubMed  Google Scholar 

  • Mingrone G, De Smet R, Greco AV, Bertuzzi A, Gandolfi A, Ringoir S, Vanholder R (1997) Serum uremic toxins from patients with chronic renal failure displace the binding of l-tryptophan to human serum albumin. Clin Chim Acta 260:27–34

    Article  CAS  PubMed  Google Scholar 

  • Minomo A, Ishima Y, Kragh-Hansen U, Chuang VT, Uchida M, Taguchi K, Watanabe H, Maruyama T, Morioka H, Otagiri M (2011) Biological characteristics of two lysines on human serum albumin in the high-affinity binding of 4Z,15Z-bilirubin-IXalpha revealed by phage display. FEBS J 278:4100–4111

    Article  CAS  PubMed  Google Scholar 

  • Minomo A, Ishima Y, Chuang VT, Suwa Y, Kragh-Hansen U, Narisoko T, Morioka H, Maruyama T, Otagiri M (2013) Albumin domain II mutant with high bilirubin binding affinity has a great potential as serum bilirubin excretion enhancer for hyperbilirubinemia treatment. Biochim Biophys Acta 1830:2917–2923

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Samanta M, Sarkar M, Kumar De A, Chatterjee S (2011) Pre-exchange 5% albumin infusion in low birth weight neonates with intensive phototherapy failure – a randomized controlled trial. J Trop Pediatr 57: 217–221

    Google Scholar 

  • Mitzner SR, Stange J, Klammt S, Peszynski P, Schmidt R (2001) Albumin dialysis using the molecular adsorbent recirculating system. Curr Opin Nephrol Hypertens 10:777–783

    Article  CAS  PubMed  Google Scholar 

  • Mitzner S, Klammt S, Stange J, Schmidt R (2006) Albumin regeneration in liver support-comparison of different methods. Ther Apher Dial 10:108–117

    Article  CAS  PubMed  Google Scholar 

  • Monzani E, Curto M, Galliano M, Minchiotti L, Aime S, Baroni S, Fasano M, Amoresano A, Salzano AM, Pucci P, Casella L (2002) Binding and relaxometric properties of heme complexes with cyanogen bromide fragments of human serum albumin. Biophys J 83:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narazaki R, Otagiri M (1997) Covalent binding of a bucillamine derivative with albumin in sera from healthy subjects and patients with various diseases. Pharm Res 14:351–353

    Article  CAS  PubMed  Google Scholar 

  • Narazaki R, Hamada M, Harada K, Otagiri M (1996) Covalent binding between bucillamine derivatives and human serum albumin. Pharm Res 13:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • O’Grady JG, Gimson AE, O’Brien CJ, Pucknell A, Hughes RD, Williams R (1988) Controlled trials of charcoal hemoperfusion and prognostic factors in fulminant hepatic failure. Gastroenterology 94:1186–1192

    Article  PubMed  Google Scholar 

  • Ohtani W, Masaki A, Ikeda Y, Hirose M, Chuganji M, Takeshima K, Kondo M, Sumi A, Ohmura T (1997) Structure of recombinant human serum albumin from Pichia pastoris. Yakugaku Zasshi 117:220–232

    CAS  PubMed  Google Scholar 

  • Ohtani W, Nawa Y, Takeshima K, Kamuro H, Kobayashi K, Ohmura T (1998a) Physicochemical and immunochemical properties of recombinant human serum albumin from Pichia pastoris. Anal Biochem 256:56–62

    Article  CAS  PubMed  Google Scholar 

  • Ohtani W, Ohda T, Sumi A, Kobayashi K, Ohmura T (1998b) Analysis of Pichia pastoris components in recombinant human serum albumin by immunological assays and by HPLC with pulsed amperometric detection. Anal Chem 70:425–429

    Article  CAS  PubMed  Google Scholar 

  • Okabayashi K, Nakagawa Y, Hayasuke N, Ohi H, Miura M, Ishida Y, Shimizu M, Murakami K, Hirabayashi K, Minamino H et al (1991) Secretory expression of the human serum albumin gene in the yeast, Saccharomyces cerevisiae. J Biochem 110:103–110

    CAS  PubMed  Google Scholar 

  • Onishi S, Itoh S, Isobe K, Ochi M, Kunikata T, Imai T (1989) Effect of the binding of bilirubin to either the first class or the second class of binding sites of the human serum albumin molecule on its photochemical reaction. Biochem J 257:711–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park DS, Petersen CE, Ha C, Harohalli K, Feix JB, Bhagavan NV (1999) Expression of a human serum albumin fragment (consisting of subdomains IA, IB, and IIA) and a study of its properties. IUBMB Life 48:169–174

    Article  CAS  PubMed  Google Scholar 

  • Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  • Petersen CE, Ha CE, Harohalli K, Feix JB, Bhagavan NV (2000) A dynamic model for bilirubin binding to human serum albumin. J Biol Chem 275:20985–20995

    Article  CAS  PubMed  Google Scholar 

  • Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J Biol Chem 276:22804–22809

    Article  CAS  PubMed  Google Scholar 

  • Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci U S A 100:6440–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rifai K, Ernst T, Kretschmer U, Bahr MJ, Schneider A, Hafer C, Haller H, Manns MP, Fliser D (2003) Prometheus – a new extracorporeal system for the treatment of liver failure. J Hepatol 39:984–990

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Cappelleri G, Aldini R, Roda E, Barbara L (1982) Quantitative aspects of the interaction of bile acids with human serum albumin. J Lipid Res 23:490–495

    CAS  PubMed  Google Scholar 

  • Seige M, Kreymann B, Jeschke B, Schweigart U, Kopp KF, Classen M (1999) Long-term treatment of patients with acute exacerbation of chronic liver failure by albumin dialysis. Transplant Proc 31:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Shakil AO, Kramer D, Mazariegos GV, Fung JJ, Rakela J (2000) Acute liver failure: clinical features, outcome analysis, and applicability of prognostic criteria. Liver Transpl 6:163–169

    CAS  PubMed  Google Scholar 

  • Shani M, Barash I, Nathan M, Ricca G, Searfoss GH, Dekel I, Faerman A, Givol D, Hurwitz DR (1992) Expression of human serum albumin in the milk of transgenic mice. Transgenic Res 1:195–208

    Article  CAS  PubMed  Google Scholar 

  • Shearer WT, Bradshaw RA, Gurd FR, Peters T Jr (1967) The amino acid sequence and copper(II)-binding properties of peptide (1–24) of bovine serum albumin. J Biol Chem 242:5451–5459

    CAS  PubMed  Google Scholar 

  • Sheffield WP, Marques JA, Bhakta V, Smith IJ (2000) Modulation of clearance of recombinant serum albumin by either glycosylation or truncation. Thromb Res 99:613–621

    Article  CAS  PubMed  Google Scholar 

  • Stange J, Ramlow W, Mitzner S, Schmidt R, Klinkmann H (1993) Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artif Organs 17:809–813

    Article  CAS  PubMed  Google Scholar 

  • Stockmann HB, IJzermans JN (2002) Prospects for the temporary treatment of acute liver failure. Eur J Gastroenterol Hepatol 14:195–203

    Article  PubMed  Google Scholar 

  • Trey C, Burns DG, Saunders SJ (1966) Treatment of hepatic coma by exchange blood transfusion. N Engl J Med 274:473–481

    Article  CAS  PubMed  Google Scholar 

  • Tsipotis E, Shuja A, Jaber BL (2015) Albumin dialysis for liver failure: a systematic review. Adv Chronic Kidney Dis 22:382–390

    Article  PubMed  Google Scholar 

  • Tsutsumi Y, Maruyama T, Takadate A, Goto M, Matsunaga H, Otagiri M (1999) Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin. Pharm Res 16:916–923

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Yamasaki K, Kragh-Hansen U, Tanase S, Harada K, Suenaga A, Otagiri M (2001) In vitro and in vivo properties of recombinant human serum albumin from Pichia pastoris purified by a method of short processing time. Pharm Res 18:1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Noguchi T, Miyamoto Y, Kadowaki D, Kotani S, Nakajima M, Miyamura S, Ishima Y, Otagiri M, Maruyama T (2012) Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin. Drug Metab Dispos 40:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zunszain PA, Ghuman J, McDonagh AF, Curry S (2008) Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXalpha. J Mol Biol 381:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Thank you

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Tuan Giam Chuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chuang, V.T.G., Maruyama, T., Otagiri, M. (2016). Human Serum Albumin in Blood Detoxification Treatment. In: Otagiri, M., Chuang, V. (eds) Albumin in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2116-9_11

Download citation

Publish with us

Policies and ethics