Skip to main content

Fundamentals of Light Sources

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

A broad selection of light sources is available for the biophotonics UV, visible, or infrared regions. These sources include arc lamps, light emitting diodes, laser diodes, superluminescent diodes, and various types of gas, solid-state, and optical fiber lasers. This chapter first defines terminology used in radiometry, which deals with the measurement of optical radiation. Understanding this terminology is important when determining and specifying the degrees of interaction of light with tissue. Next the characteristics of optical sources for biophotonics are described. This includes the spectrum over which the source emits, the emitted power levels as a function of wavelength, the optical power per unit solid angle emitted in a given direction, the light polarization, and the coherence properties of the emission. In addition, depending on the operating principles of the light source, it can emit light in either a continuous mode or a pulsed mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.F. Zalewski, Radiometry and photometry, chap. 34, in Handbook of Optics: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry, eds. by M. Bass, C. DeCusatis, J. Enoch, V. Lakshminaravanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, vol. 2, 3rd edn. (McGraw-Hill, New York, 2010)

    Google Scholar 

  2. I. Moreno, LED intensity distribution, paper TuD6, in OSA International Optical Design Conference, Vancouver, CA, June 2006

    Google Scholar 

  3. J.M. Palmer, Radiometry and photometry: units and conversions, chap. 7, in Handbook of Optics: Classical Optics, Vision Optics, X-Ray Optics, eds. by M. Bass, J. Enoch, E. Van Stryland, W.L. Wolfe, vol. 3, 2nd edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  4. D. Nakar, A. Malul, D. Feuermann, J.M. Gordon, Radiometric characterization of ultrahigh radiance xenon short-arc discharge lamps. Appl. Opt. 47(2), 224–229 (2008)

    Article  ADS  Google Scholar 

  5. Newport Corp., DC-Arc-Lamps. www.newport.com, July 2015

  6. Hamamatsu Photonics, Super-Quiet Xenon Flash Lamp Series. www.hamamatsu.com, Sept 2013

  7. W. Henry, MicroLEDs enabling new generation of fluorescence instruments. Biophotonics 20(3), 25–28 (2013)

    Google Scholar 

  8. M.-H. Chang, D. Das, P.V. Varde, M. Pecht, Light emitting diodes reliability review. Microelecton. Reliab. 52, 762–782 (2012)

    Article  Google Scholar 

  9. W.D. van Driel, X.J. Fan, eds., Solid State Lighting Reliability: Components to Systems (Springer, Berlin, 2013)

    Google Scholar 

  10. R.-H. Horng, S.-H. Chuang, C.-H. Tien, S.-C. Lin, D.-S. Wuu, High performance GaN-based flip-chip LEDs with different electrode patterns, Optics Express 22(S3), A941–A946 (2014)

    Google Scholar 

  11. D.A. Neaman, Semiconductor Physics and Devices, 4th edn. (McGraw-Hill, New York, 2012)

    Google Scholar 

  12. S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd edn. (Pearson, Upper Saddle River, NJ, 2013)

    Google Scholar 

  13. G. Keiser, Optical Fiber Communications, 4th US edn., 2011; 5th international edn., 2015 (McGraw-Hill, New York)

    Google Scholar 

  14. H. Ries, J. Muschaweck, Tailored freeform optical surfaces. J. Opt. Soc. America A 19, 590–595 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. L.-T. Chen, G. Keiser, Y.-R. Huang, S.-L. Lee, A simple design approach of a Fresnel lens for creating uniform light-emitting diode light distribution patterns. Fiber Integ. Optics 33(5–6), 360–382 (2014)

    Article  ADS  Google Scholar 

  16. Q. Peng, A. Juzeniene, J. Chen, L.O. Svaasand, T. Warloe, K.-E. Giercksky, J. Moan, Lasers in medicine, Rep. Prog. Phys. 71, 056701 (2008)

    Google Scholar 

  17. B. Kemper, G. von Bally, Coherent laser measurement techniques for medical diagnostics, chap. 9, in Biophotonics, eds. by L. Pavesi, P.M. Fauchet (Springer, Berlin, 2008)

    Google Scholar 

  18. R. Riesenberg, A. Wutting, Optical sources, chap. 4, pp. 263–295, in Handbook of Biophotonics, eds. by J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann, vol. 1: Basics and Techniques (Wiley, New York, 2011)

    Google Scholar 

  19. A. Müller, S. Marschall, O.B. Jensen, J. Fricke, H. Wenzel, B. Sumpf, P.E. Andersen, Diode laser based light sources for biomedical applications. Laser Photonics Rev. 7(5), 605–627 (2013)

    Article  Google Scholar 

  20. H. Tu, S.A. Boppart, Coherent fiber supercontinuum for biophotonics. Laser Photonics Rev. 7(5), 628–645 (2013)

    Article  Google Scholar 

  21. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013)

    Book  Google Scholar 

  22. M. Razeghi, High-performance InP-based mid-IR quantum cascade lasers. IEEE J. Sel. Topics Quantum Electron. 15(3), 941–951 (2009)

    Google Scholar 

  23. S. Liakat, K.A. Bors, L. Xu, C.M. Woods, J. Doyle, C.F. Gmachi, Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed. Opt. Express 5, 2397–2404 (2014)

    Article  Google Scholar 

  24. T. Watanabe, K. Iwai, T. Katagiri, Y. Matsuura, Synchronous radiation with Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues. Biomed. Opt. Express 1, 337–346 (2010)

    Article  Google Scholar 

  25. J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D.W. Piston, K. Joos, M.S. Hutson, Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed. Opt. Express 2, 1275–1281 (2011)

    Google Scholar 

  26. G. Deka, K. Okano, F.-J. Kao, Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser, J. Biomed. Optics 19, 011012 (2014)

    Google Scholar 

  27. K. Baek, W. Deibel, D. Marinov, M. Griessen, M. Dard, A. Bruno, H.-F. Zeilhofer, P. Cattin, P. Juergens, A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser. Lasers Surg. Med. 47, 426–432 (2015)

    Article  Google Scholar 

  28. P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, K.F. Wall, G. Frith, B. Samson, A.L.G. Carter, Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Topics Quantum Electron. 15, 85–92 (2009)

    Article  Google Scholar 

  29. H. Ahmad, A.Z. Zulkifli, K. Thambiratnam, S.W. Harun, 2.0-μm Q-switched thulium-doped fiber laser with graphene oxide saturable absorber. IEEE Photonics J. 5(4), 1501108 (2013)

    Google Scholar 

  30. W. Shi, Q. Fang, X. Zhu, R.A. Norwood, N. Peyghambarian, Fiber lasers and their applications. Appl. Opt. 53(28), 6554–6568 (2014)

    Article  ADS  Google Scholar 

  31. L.J. Mortensen, C. Alt, R. Turcotte, M. Masek, T.-M. Liu, D.C. Cote, C. Xu, G. Intini, C.P. Lin, Femtosecond bone ablation with a high repetition rate fiber laser source. Biomed. Opt. Express 6, 32–42 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Keiser, G. (2016). Fundamentals of Light Sources . In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0945-7_4

Download citation

Publish with us

Policies and ethics