Skip to main content

Anti-inflammatory Effects of Galactose-Taurine Sodium Salt in LPS-Activated RAW 264.7 Cells

  • Conference paper
Taurine 10

Abstract

In this study, we synthesized Galactose-Taurine sodium salt (G-T) as a functional food ingredient to enhance biological activities of taurine. Also, anti-inflammatory effects of G-T were investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. G-T found to reduce the generations of the LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) via down-regulating the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Also, G-T reduced the secretion of inflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF-α) in LPS-treated RAW 264.7 cells. Finally, we identified that G-T inhibits the activation of nuclear factor-κB (NF-κB) and the phosphorylation of inhibitor κB (IκB)-α. From these results, this study first suggests that G-T could be considered as an effective anti-inflammatory agent.

$N. Kang and K.J. Chang are equally contributed to this study.

§S.H. Cheong and G. Ahn are equally contributed to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

Gal-Tau:

Galactose-Taurine sodium salt

IκB-α:

Inhibitor κB-α

IL-1β:

Interleukin-1β

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

iNOS:

Inducible NO synthase

PGE2 :

Prostaglandin E2

TNF-α:

Tumor necrosis factor-α

References

  • Ajizian SJ, English BK, Meals EA (1999) Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ. J Infect Dis 179:939–944. doi:10.1086/314659

    Article  CAS  PubMed  Google Scholar 

  • Bae IK, Min HY, Han AR, Seo EK, Lee SK (2005) Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur J Pharmacol 513:237–242. doi:10.1016/j.ejphar.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  • Caramori G, Adcock IM, Ito K (2004) Anti-inflammatory inhibitors of IkappaB kinase in asthma and COPD. Curr Opin Investig Drugs 5:1141–1147

    CAS  PubMed  Google Scholar 

  • Cho HJ, You JS, Chang KJ, Kim KS, Kim SH (2014) Anti-adipogenic effect of taurine-carbohydrate derivatives. Bull Korean Chem Soc 35:1863–1866

    Article  CAS  Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832. doi:10.1038/nrmicro1004

    Article  CAS  PubMed  Google Scholar 

  • Higashimoto T, Panopoulos A, Hsieh CL, Zandi E (2006) TNFalpha induces chromosomal abnormalities independent of ROS through IKK, JNK, p38 and caspase pathways. Cytokine 34:39–50. doi:10.1016/j.cyto.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  • Jones E, Adcock IM, Ahmed BY, Punchard NA (2007) Modulation of LPS stimulated NFκB mediated nitric oxide production by PKCε and JAK2 in RAW macrophages. J Inflamm 4:23. doi:10.1186/1476-9255-4-23

    Article  Google Scholar 

  • Kharitinov SA, Barnes JP (2004) Effects of corticosteroids on noninvasive biomarkers of inflammation in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 1:191–199

    Article  Google Scholar 

  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58:759–765. doi:10.1016/S0006-2952(99)00160-4

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Lee YJ, You JS, Kim SH, Chang KJ (2015) N-(D-Ribopyranosyl) taurine sodium salt has anti-obesity effect in diet-induced obesity and taurine deficiency rat model. Adv Exp Med Biol 803:897–905. doi:10.1007/978-3-319-15126-7_73

    Article  PubMed  Google Scholar 

  • Lee WW, Ahn G, Wijesinghe WAJP, Kim YM, Kim SK, Lee BJ, Jeon YJ (2011) A polysaccharide isolated from Ecklonia cava fermented by Lactobacillus brevis inhibits the inflammatory response by suppressing the activation of nuclear factor-κB in lipopolysaccharide-induced RAW 264.7 macrophages. J Med Food 14(12):1546–1553

    Google Scholar 

  • Marcinkiewicz J, Kurnyta M, Biedroń R, Bobek M, Kontny E, Maśliński W (2006) Antiinflammatory effects of taurine derivatives (taurine chloramine, taurine bromamine, and taurolidine) are mediated by different mechanisms. Adv Exp Med Biol 583:481–492

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Fa Y, Gu B, Zhu W, Zou S (2012) Taurine attenuates lipopolysaccharide-induced disfunction in mouse mammary epithelial cells. Cytokine 59:35–40. doi:10.1016/j.cyto.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  • Miggin SM, O’Neill LA (2006) New insights into the regulation of TLR signalling. J Leukoc Biol 80:220–226. doi:10.1189/jlb.1105672

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750. doi:10.1016/S0278-6915(02)00169-2

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Wright CE, Gaull GE (1985) Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol 34:2205–2207. doi:10.1016/0006-2952(85)90419-8

    Article  CAS  PubMed  Google Scholar 

  • Posadas I, Terencio MC, Guillén I, Ferrándiz ML, Coloma J, Payá M, Alcaraz MJ (2000) Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol 361:98–106

    Article  CAS  PubMed  Google Scholar 

  • Stapleton PP, Bloomfield FJ (1993) Effect of zwitterions on the respiratory burst. J Biomed Sci 3:79–84

    Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–148

    CAS  PubMed  Google Scholar 

  • Takahashi K, Harada H, Schaffer SW (1992) Effect of taurine on intracellular calcium dynamics of cultured myocardial cells during the calcium paradox. In: Lombardini JB (ed) Taurine nutritional value and mechanisms of action. Plenum Press, New York, pp 3768–3774

    Google Scholar 

  • Uto T, Fujii M, Hou DX (2005) 6-(Methylsulfinyl) hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochem Pharmacol 70:1211–1221. doi:10.1016/j.bcp.2005.07.011

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Lallemand F, de Witte P, Crichton RR, Piette J, Tipton K, Hemmings K, Pitard A, Page M, Della Corte L, Taylor D, Dexter D (2011) Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro. Biochem Pharmacol 81:743–751. doi:10.1016/j.bcp.2010.12.030

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Kakinuma T, Julovi SM, Hiramatsu T, Akiyoshi M, Nakamura T (2004) COOH- terminal heparin-binding fibronectin fragment induces nitric oxide production in rheumatoid cartilage through CD44. Rheumatology 43:1116–1120. doi:10.1093/rheumatology/keh274

    Article  CAS  PubMed  Google Scholar 

  • Yoon WJ, Moon JY, Kang JY, Kim GO, Lee NH, Hyun CG (2010) Neolitsea sericea essential oil attenuates LPS-induced inflammation in RAW 264.7 macrophages by suppressing NF-kappaB and MAPK activation. Nat Prod Commun 5:1311–1316

    CAS  PubMed  Google Scholar 

  • You JS, Lee YJ, Kim SY, Chang KJ, Cho HJ, Kim SH (2015) N-(β-D-Xylopyranosyl) taurine sodium salt supplementation has beneficial effect on the hepatic antioxidant system of rats fed a high-fat diet and β-alanine. Adv Exp Med Biol 803:869–877. doi:10.1007/978-3-319-15126-7_70

  • Zhang F, Mao Y, Qiao H, Jiang H, Zhao H, Chen X, Tong L, Sun X (2010) Protective effects of taurine against endotoxin-induced acute liver injury after hepatic ischemia reperfusion. Amino Acids 38:237–245. doi:10.1007/s00726-009-0233-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Hee Cheong or Ginnae Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kang, N. et al. (2017). Anti-inflammatory Effects of Galactose-Taurine Sodium Salt in LPS-Activated RAW 264.7 Cells. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_75

Download citation

Publish with us

Policies and ethics