Skip to main content

Vitamin A Absorption, Storage and Mobilization

  • Chapter
  • First Online:
The Biochemistry of Retinoid Signaling II

Part of the book series: Subcellular Biochemistry ((SCBI,volume 81))

Abstract

It is well established that chylomicron remnant (dietary) vitamin A is taken up from the circulation by hepatocytes, but more than 80 % of the vitamin A in the liver is stored in hepatic stellate cells (HSC). It presently is not known how vitamin A is transferred from hepatocytes to HSCs for storage. Since retinol-binding protein 4 (RBP4), a protein that is required for mobilizing stored vitamin A, is synthesized solely by hepatocytes and not HSCs, it similarly is not known how vitamin A is transferred from HSCs to hepatocytes. Although it has long been thought that RBP4 is absolutely essential for delivering vitamin A to tissues, recent research has proven that this notion is incorrect since total RBP4-deficiency is not lethal. In addition to RBP4, vitamin A is also found in the circulation bound to lipoproteins and as retinoic acid bound to albumin. It is not known how these different circulating pools of vitamin A contribute to the vitamin A needs of different tissues. In our view, better insight into these three issues is required to better understand vitamin A absorption, storage and mobilization. Here, we provide an up to date synthesis of current knowledge regarding the intestinal uptake of dietary vitamin A, the storage of vitamin A within the liver, and the mobilization of hepatic vitamin A stores, and summarize areas where our understanding of these processes is incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

apoE:

apolipoprotein E

ARAT:

acyl-CoA:retinol acyltransferase

ATRA:

all-trans-retinoic acid

ATCA1:

ATP-binding cassette, sub-family A, member 1

BCO1:

β-carotene-15,15′-oxygenase

BCO2:

β-carotene-9′,10′-oxygenase

CEL:

carboxyl ester lipase

DGAT1:

diacylglycerol acyltransferase 1

DGAT2:

diacylglycerol acyltransferase 2

HDL:

high density lipoprotein

HSC:

hepatic stellate cell

HSL:

hormone sensitive lipase

LDL:

low density lipoprotein

LpL:

lipoprotein lipase

LRAT:

lecithin:retinol acyltransferase

Lrat −/− :

lecithin:retinol acyltransferase-deficient

LRP:

low density lipoprotein receptor-related protein

PLRP2:

pancreatic lipase-related protein 2

PTL:

pancreatic triglyceride lipase

RBP1:

cellular retinol-binding protein, type I

Rbp1 −/− :

cellular retinol-binding protein, type I-deficient

RBP2:

cellular retinol-binding protein, type 2

RBP3:

interphotoreceptor retinoid-binding protein

RBP4:

retinol-binding protein

Rbp4 −/− :

retinol-binding protein-deficient

REH:

retinyl ester hydrolase

SR-B1:

scavenger receptor class B

siRNA:

small inhibitory RNA

STRA6:

stimulated by retinoic acid 6

TTR:

transthyretin

VLDL:

very low density lipoprotein.

References

  1. Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amengual J, Widjaja-Adhi MA, Bodriguez-Santiago S, Hessel S, Golczak M, Palczewski K, von Lintig J (2013) Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. J Biol Chem 288:34081–34096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andersen KB, Nilsson A, Blomhoff HK, Oyen TB, Gabrielsen OS, Norum KR, Blomhoff R (1992) Direct mobilization of retinol from hepatic perisinusoidal stellate cells to plasma. J Biol Chem 267:1340–1344

    CAS  PubMed  Google Scholar 

  4. Ballew C, Galuska D, Gillespie C (2001) High serum retinyl esters are not associated with reduced bone mineral density in the third national health and nutrition examination survey, 1988–1994. J Bone Mineral Res 16:2306–2312

    Article  CAS  Google Scholar 

  5. Batres RO, Olson JA (1987) A marginal vitamin A status alters the distribution of vitamin A among parenchymal and stellate cells in rat liver. J Nutr 117:874–879

    CAS  PubMed  Google Scholar 

  6. Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, Bronson D, Possin D, Van Gelder RN, Baehr W, Palczewski K (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 279:10422–10432

    Article  CAS  PubMed  Google Scholar 

  7. Biesalski HK, Frank J, Beck SC, Heinrich F, Illek B, Reifen R, Gollnick H, Seeliger MW, Wissinger B, Zrenner E (1999) Biochemical but not clinical vitamin A deficiency results from mutations in the gene for retinol binding protein. Am J Clin Nutr 69:931–936

    CAS  PubMed  Google Scholar 

  8. Blaner WS (1994) Retinoid (vitamin A) metabolism and the liver. In: Arias IM, Jakoby WB, Popper H, Schacter D, Shafritz DS (eds) The liver. Raven, New York, pp 529–542

    Google Scholar 

  9. Blaner WS, Olson JA (1994) Retinol and retinoic acid metabolism. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine. Raven Press Ltd., New York, pp 229–256

    Google Scholar 

  10. Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DN, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791:467–473

    Article  CAS  PubMed  Google Scholar 

  11. Blaner WS, Hendriks HF, Brouwer A, de Leeuw AM, Knook DL, Goodman DS (1985) Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res 26:1241–1251

    CAS  PubMed  Google Scholar 

  12. Blaner WS, Dixon JL, Moriwaki H, Martino RA, Stein O, Stein Y, Goodman DS (1987) Studies on the in vivo transfer of retinoids from parenchymal to stellate cells in rat liver. Eur J Biochem 164:301–307

    Article  CAS  PubMed  Google Scholar 

  13. Blaner WS, Obunike JC, Kurlandsky SB, Al-Haideri M, Piantedosi R, Deckelbaum RJ, Goldberg IJ (1994) Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J Biol Chem 269:16559–16565

    CAS  PubMed  Google Scholar 

  14. Blomhoff R, Helgerud P, Rasmussen M, Berg T, Norum KR (1982) In vivo uptake of chylomicron [3H]retinyl ester by rat liver: evidence for retinol transfer from parenchymal to nonparenchymal cells. Proc Natl Acad Sci U S A 79:7326–7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blomhoff R, Holte K, Naess L, Berg T (1984) Newly administered [3H]retinol is transferred from hepatocytes to stellate cells in liver for storage. Exp Cell Res 150:186–193

    Article  CAS  PubMed  Google Scholar 

  16. Blomhoff R, Rasmussen M, Nilsson A, Norum KR, Berg T, Blaner WS, Kato M, Mertz JR, Goodman DS, Eriksson U, Peterson PA (1985) Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells. J Biol Chem 260:13560–13565

    CAS  PubMed  Google Scholar 

  17. Blomhoff R, Berg T, Norum KR (1988) Distribution of retinol in rat liver cells: effect of age, sex and nutritional status. Br J Nutr 60:233–239

    Article  CAS  PubMed  Google Scholar 

  18. Blomhoff R, Berg T, Norum KR (1988) Transfer of retinol from parenchymal to stellate cells in liver is mediated by retinol-binding protein. Proc Natl Acad Sci U S A 85:3455–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blomhoff R, Green MH, Green JB, Berg T, Norum KR (1991) Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 71:951–990

    CAS  PubMed  Google Scholar 

  20. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  CAS  PubMed  Google Scholar 

  21. Chambon P (1994) The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol 5:115–125

    Article  CAS  PubMed  Google Scholar 

  22. Chichili GR, Nohr D, Schaffer M, von Lintig J, Biesalski HK (2005) β-Carotene conversion into vitamin A in human retinal pigment epithelial cells. Invest Ophthal Vis Sci 46:3562–3569

    Article  PubMed  Google Scholar 

  23. Cifelli CJ, Green JB, Green MH (2005) Dietary retinoic acid alters vitamin A kinetics in both the whole body and in specific organs of rats with low vitamin A status. J Nutr 135:746–752

    CAS  PubMed  Google Scholar 

  24. Cooper AD (1997) Hepatic uptake of chylomicron remnants. J Lipid Res 38:2173–2192

    CAS  PubMed  Google Scholar 

  25. dela Sena C, Narayansamy S, Riedl KM, Curley RW Jr, Schwartz SJ, Harrison EH (2013) Substrate specificity of purified recombinant human β-carotene 15,15′oxygenase (BCO1). J Biol Chem 288:37094–37103

    Article  CAS  Google Scholar 

  26. dela Sena C, Riedl KM, Narayanasamy S, Curley RW Jr, Schwartz SJ, Harrison EH (2014) The human enzyme that converts dietary provitamin A carotenoids to vitamin A is a dioxygenase. J Biol Chem 289:13661–13666

    Article  CAS  Google Scholar 

  27. Dixon JL, Goodman DS (1987) Studies on the metabolism of retinol-binding protein by primary hepatocytes from retinol-deficient rats. J Cell Physiol 130:14–20

    Article  CAS  PubMed  Google Scholar 

  28. During A, Harrison EH (2007) Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. J Lipid Res 48:2283–2294

    Article  CAS  PubMed  Google Scholar 

  29. Eriksson U, Das K, Busch C, Nordlinder H, Rask L, Sundelin J, Sallstrom J, Peterson PA (1984) Cellular retinol-binding protein. Quantitation and distribution. J Biol Chem 259:13464–13470

    CAS  PubMed  Google Scholar 

  30. Eroglu A, Harrison EH (2013) Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 54:171–1730

    Article  CAS  Google Scholar 

  31. Fex G, Johannesson G (1988) Retinol transfer across and between phospholipid bilayer membranes. Biochim Biophys Acta 944:249–255

    Article  CAS  PubMed  Google Scholar 

  32. Fex G, Johannesson G (1990) Transfer of retinol from retinol-binding protein complex to liposomes and across liposomal membranes. Methods Enzymol 189:394–402

    Article  CAS  PubMed  Google Scholar 

  33. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friedman SL, Wei S, Blaner WS (1993) Retinol release by activated rat hepatic lipocytes: Regulation by Kupffer cell-conditioned medium and PDGF. Am J Physiol 264:G947–G952

    CAS  PubMed  Google Scholar 

  35. Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21:311–335

    Article  CAS  PubMed  Google Scholar 

  36. Ghyselinck NB, Bavik C, Sapin V, Mark M, Bonnier D, Hindelang C, Dierich A, Nilsson CB, Hakansson H, Sauvant P, Azais-Braesco V, Frasson M, Picaud S, Chambon P (1999) Cellular retinol-binding protein 1 is essential for vitamin A homeostasis. EMBO J 18:4903–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149

    Google Scholar 

  38. Goodman DS, Blaner WS (1984) Biosynthesis, absorption, and hepatic metabolism of retinol. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Academic Press, New York, pp 1–39

    Google Scholar 

  39. Goodman DW, Huang HS, Shiratori T (1965) Tissue distribution and metabolism of newly absorbed vitamin A in the rat. J Lipid Res 6:390–396

    CAS  PubMed  Google Scholar 

  40. Goodman DW, Huang HS, Shiratori T (1966) Mechanism of the biosynthesis of vitamin A from β-carotene. J Biol Chem 241:1929–1932

    CAS  PubMed  Google Scholar 

  41. Green MH, Green JB, Lewis KC (1987) Variation in retinol utilization rate with vitamin A status in the rat. J Nutr 117:694–703

    CAS  PubMed  Google Scholar 

  42. Harrison EH (2012) Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 1821:70–77

    Article  CAS  PubMed  Google Scholar 

  43. Harrison EH, Gad MZ, Ross AC (1995) Hepatic uptake and metabolism of chylomicron retinyl esters: probable role of plasma membrane/endosomal retinyl ester hydrolases. J Lipid Res 36:1498–1506

    CAS  PubMed  Google Scholar 

  44. Hendriks HF, Brekelmans PJ, Buytenhek R, Brouwer A, de Leeuw AM, Knook DL (1987) Liver parenchymal cells differ from the fat-storing cells in their lipid composition. Lipids 22:266–273

    Article  CAS  PubMed  Google Scholar 

  45. Hepatic stellate cell nomenclature. Hepatology 1996;23:193

    Google Scholar 

  46. Herr FM, Ong DE (1992) Differential interaction of lecithin-retinol acyltransferase with cellular retinol binding proteins. Biochemistry 31:6748–6755

    Article  CAS  PubMed  Google Scholar 

  47. Hu KQ, Liu C, Ernst H, Krinsky NI, Russell RM, Wang XD (2006) The biochemical characterization of ferret carotene-9′,10′-monooxygenase catalyzing cleavage of carotenoids in vitro and in vivo. J Biol Chem 281:19327–19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang H, Goodman DS (1965) Vitamin A and carotenoids. I. Intestinal absorption and metabolism of 14C-labeled vitamin A alcohol, and β-carotene in the rat. J Biol Chem 240:2839–2844

    CAS  PubMed  Google Scholar 

  49. Isken A, Golczak M, Oberhauser V, Hunzelmann S, Driever W, Imanishi Y, Palczewski K, von Lintig J (2008) Rbp4 disrupts vitamin A uptake homeostasis in a stra6-deficient animal model for matthew-wood syndrome. Cell Metab 7:258–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47:2025–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kane MA, Folias AE, Napoli JL (2008) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem 378:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keilson B, Underwood BA, Loerch JD (1979) Effects of retinoic acid on the mobilization of vitamin A from the liver in rats. J Nutr 109:787–795

    CAS  PubMed  Google Scholar 

  53. Kiefer C, Hessel S, Lampert JM, Vogt K, Lederer MO, Breithaupt DE, von Lintig J (2001) Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem 276:14110–14116

    CAS  PubMed  Google Scholar 

  54. Kim YK, Wassef L, Hamberger L, Piantedosi R, Palczewski K, Blaner WS, Quadro L (2008) Retinyl ester formation by lecithin:retinol acyltransferase is a key regulator of retinoid homeostasis in mouse embryogenesis. J Biol Chem 283:5611–5621

    Article  CAS  PubMed  Google Scholar 

  55. Kluwe J, Wongsiriroj N, Troeger JS, Gwak GY, Dapito DH, Pradere JP, Jiang H, Siddiqi M, Piantedosi R, O’Byrne SM, Blaner WS, Schwabe RF (2011) Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 60:1260–1268

    Article  CAS  PubMed  Google Scholar 

  56. Kurlandsky SB, Gamble MV, Ramakrishnan R, Blaner WS (1995) Plasma delivery of retinoic acid to tissues in the rat. J Biol Chem 270:17850–17857

    Article  CAS  PubMed  Google Scholar 

  57. Leuenberger MG, Engeloch-Jarret C, Woggon WD (2001) The reaction mechanism of the enzyme-catalyzed central cleavage of β-carotene to retinal. Angew Chem Int Ed 40:2614–2617

    Article  Google Scholar 

  58. Lewis KC, Green MH, Green JB, Zech LA (1990) Retinol metabolism in rats with low vitamin A status: a compartmental model. J Lipid Res 31:1535–1548

    CAS  PubMed  Google Scholar 

  59. Lindqvist A, Andersson S (2002) Biochemical properties of purified recombinant human β-carotene 15,15′-monooxygenase. J Biol Chem 277:23942–23948

    Article  CAS  PubMed  Google Scholar 

  60. Lindqvist A, He YG, Andersson S (2005) Cell type-specific expression of beta-carotene 9′,10′-monooxygenase in human tissues. J Histochem Cytochem 53:1403–1412

    Article  CAS  PubMed  Google Scholar 

  61. Linke T, Dawson H, Harrison EH (2005) Isolation and characterization of a microsomal acid retinyl ester hydrolase. J Biol Chem 280:23287–23294

    Article  CAS  PubMed  Google Scholar 

  62. Liu L, Gudas LJ (2005) Disruption of the lecithin:retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J Biol Chem 280:40226–40234

    Article  CAS  PubMed  Google Scholar 

  63. Lobo GP, Hessel S, Eichinger A, Noy N, Moise AR, Wyss A, Palczewski K, von Lintig J (2010) ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption and vitamin A production. FASEB J 24:1656–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mangelsdorf DJ, Umesono K, Evans RM (1994) The retinoid receptors. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine. Raven Press Ltd., New York, pp 319–350

    Google Scholar 

  65. Melhus H, Nilsson T, Peterson PA, Rask L (1991) Retinol-binding protein and transthyretin expressed in HeLa cells form a complex in the endoplasmic reticulum in both the absence and the presence of retinol. Exp Cell Res 197:119–124

    Article  CAS  PubMed  Google Scholar 

  66. Melhus H, Laurent B, Rask L, Peterson PA (1992) Ligand-dependent secretion of rat retinol-binding protein expressed in hela cells. J Biol Chem 267:12036–12041

    CAS  PubMed  Google Scholar 

  67. Mello T, Nakatsuka A, Fears S, Davis W, Tsukamoto H, Bosron WF, Sanghani SP (2008) Expression of carboxylesterase and lipase genes in rat liver cell-types. Biochem Biophys Res Commun 374:460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moore T (1930) Vitamin A and carotene: the conversion of carotene to vitamin A in vivo. Biochem J 24:692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moore T (1957) Vitamin A. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  70. Moriwaki H, Blaner WS, Piantedosi R, Goodman DS (1988) Effects of dietary retinoid and triglyceride on the lipid composition of rat liver stellate cells and stellate cell lipid droplets. J Lipid Res 29:1523–1534

    CAS  PubMed  Google Scholar 

  71. Moussa M, Landrier JF, Reboul E, Ghiringhelli O, Comera C, Collet X, Frohlich K, Bohm V, Borel P (2008) Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type 1 but not Niemann-Pick C1-like 1. J Nutr 138:1432–1436

    CAS  PubMed  Google Scholar 

  72. Muto Y, Smith JE, Milch PO, Goodman DS (1972) Regulation of retinol-binding protein metabolism by vitamin A status in the rat. J Biol Chem 247:2542–2550

    CAS  PubMed  Google Scholar 

  73. Nagatsuma K, Hayashi Y, Hano H, Sagara H, Murakami K, Saito M, Masaki T, Lu T, Tanaka M, Enzan H, Aizawa Y, Tajiri H, Matsuura T (2009) Lecithin:retinol acyltransferase protein is distributed in both hepatic stellate cells and endothelial cells of normal rodent and human liver. Liver Int 29:47–54

    Article  CAS  PubMed  Google Scholar 

  74. Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noy N, Blaner WS (1991) Interactions of retinol with binding proteins: studies with rat cellular retinol-binding protein and with rat retinol-binding protein. Biochemistry 30:6380–6386

    Article  CAS  PubMed  Google Scholar 

  76. O’Byrne SM, Blaner WS (2013) Retinol and retinyl esters: biochemistry and physiology. J Lipid Res 54:1731–1743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. O’Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, Baehr W, Palczewski K, Blaner WS (2005) Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT). J Biol Chem 280:35647–35657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. O’Byrne SM, Kako Y, Deckelbaum RJ, Hansen IH, Palczewski K, Goldberg IJ, Blaner WS (2010) Multiple pathways ensure retinoid delivery to milk: studies in genetically modified mice. Am J Physiol Endocrinol Metab 298:E862–E870

    Article  PubMed  CAS  Google Scholar 

  79. Olson JA (1989) Provitamin A function of carotenoids: the conversion of β-carotene to vitamin A. J Nutr 119:105–108

    CAS  PubMed  Google Scholar 

  80. Olson JA, Hayaishi O (1965) The enzymatic cleavage of beta-carotene to vitamin A by soluble enzymes of rat liver and intestine. Proc Natl Acad Sci U S A 54:1364–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ong DE, Newcomer ME, Chytil F (1994) Cellular retinoid-binding proteins. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry and medicine. Raven Press Ltd., New York, pp 283–318

    Google Scholar 

  82. Orland MD, Anwar K, Cromley D, Chu CH, Chen L, Billheimer JT, Hussain MM, Cheng D (2005) Acyl coenzyme A dependent retinol esterification by acyl coenzyme A: Diacylglycerol acyltransferase 1. Biochim Biophys Acta 1737:76–82

    Article  CAS  PubMed  Google Scholar 

  83. Paik J, During A, Harrison EH, Mendelsohn CL, Lai K, Blaner WS (2001) Expression and characterization of A murine enzyme able to cleave β-carotene: the formation of retinoids. J Biol Chem 276:32160–32168

    Article  CAS  PubMed  Google Scholar 

  84. Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619

    Article  CAS  PubMed  Google Scholar 

  85. Pang W, Zhang Y, Wang S, Jia A, Dong W, Cai C, Hua Z, Zhang J (2011) The mplrp2 and mclps genes are involved in the hydrolysis of retinyl esters in the mouse liver. J Lipid Res 52:934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeffer BA, Clark VM, Flannery JG, Bok D (1986) Membrane receptors for retinol-binding protein in cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci 27:1031–1040

    CAS  PubMed  Google Scholar 

  87. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME (1999) Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 18:4633–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Quadro L, Blaner WS, Hamberger L, Novikoff PM, Vogel S, Piantedosi R, Gottesman ME, Colantuoni V (2004) The role of extrahepatic retinol binding protein in the mobilization of retinoid stores. J Lipid Res 45:1975–1982

    Article  CAS  PubMed  Google Scholar 

  89. Quadro L, Hamberger L, Gottesman ME, Wang F, Colantuoni V, Blaner WS, Mendelsohn CL (2005) Pathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency. Endocrinology 146:4479–4490

    Article  CAS  PubMed  Google Scholar 

  90. Raila J, Mathews U, Schweigert FJ (2001) Plasma transport and tissue distribution of beta-carotene, vitamin A and retinol-binding protein in domestic cats. Comp Biochem Physiol A Mol Integr Physiol 130:849–856

    Article  CAS  PubMed  Google Scholar 

  91. Raila J, Radon R, Trupschuch A, Schweigert FJ (2002) Retinol and retinyl ester responses in the blood plasma and urine of dogs after a single oral dose of vitamin A. J Nutr 132:1673S–1675S

    CAS  PubMed  Google Scholar 

  92. Reboul E, Abou L, Mikail C, Ghiringhelli O, Andre M, Portugal H, Jourdheuil-Rahmani D, Amiot MJ, Lairon D, Borel P (2005) Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type 1 (SR-B1). Biochem J 387:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reboul E, Berton A, Moussa M, Kreuzer C, Crenon I, Borel P (2006) Pancreatic lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein 1, hydrolyze retinyl palmitate in physiological conditions. Biochim Biophys Acta 1761:4–10

    Article  CAS  PubMed  Google Scholar 

  94. Reboul E, Trompier D, Moussa M, Klein A, Landrier JF, Chimini G, Borel P (2009) ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of alpha- and gamma-tocopherol but not in that of retinyl palmitate in mice. Am J Clin Nutr 89:177–184

    Article  CAS  PubMed  Google Scholar 

  95. Redgrave TG (2004) Chylomicron metabolism. Biochem Soc Trans 32:79–82

    Article  CAS  PubMed  Google Scholar 

  96. Redlich CA, Grauer JN, van Bennekum AM, Clever SL, Ponn RB, Blaner WS (1996) Characterization of carotenoid, vitamin A, and alpha-tocopheral levels in human lung tissue and pulmonary macrophages. Am J Res Crit Care Med 154:1436–1443

    Article  CAS  Google Scholar 

  97. Redlich CA, Chung JS, Cullen MR, Blaner WS, van Bennekum AM, Berglund L (1999) Effect of long-term beta-carotene and vitamin A on serum cholesterol and triglyceride levels among participants in the Carotene and Retinol Efficacy Trial (CARET). Atherosclerosis 143:427–434

    Article  CAS  PubMed  Google Scholar 

  98. Redmond TM, Gentleman S, Duncan T, Yu S, Wiggert B, Gantt E, Cunningham FX Jr (2001) Identification, expression, and substrate specificity of a mammalian β-carotene 15,15′-dioxygenase. J Biol Chem 276:6560–6565

    Article  CAS  PubMed  Google Scholar 

  99. Relas H, Gylling H, Miettinen TA (2000) Effect of stanol ester on postabsorptive squalene and retinyl palmitate. Metabolism 49:473–478

    Article  CAS  PubMed  Google Scholar 

  100. Rigtrup KM, Ong DE (1992) A retinyl ester hydrolase activity intrinsic to the brush border membrane of rat small intestine. Biochemistry 31:2920–2926

    Article  CAS  PubMed  Google Scholar 

  101. Rigtrup KM, Kakkad B, Ong DE (1994) Purification and partial characterization of a retinyl ester hydrolase from the brush border of rat small intestine mucosa: Probable identity with brush border phospholipase B. Biochemistry 33:2661–2666

    Article  CAS  PubMed  Google Scholar 

  102. Rigtrup KM, McEwen LR, Said HM, Ong DE (1994) Retinyl ester hydrolytic activity associated with human intestinal brush border membranes. Am J Clin Nutr 60:111–116

    CAS  PubMed  Google Scholar 

  103. Ruggles KV, Turkish A, Sturley SL (2013) Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 33:413–451

    Article  CAS  PubMed  Google Scholar 

  104. Saari JC (1999) Retinoids in mammalian vision. In: Nau H, Blaner WS (eds) The handbook of experimental pharmacology, the retinoids. Springer Verlag, Berlin, pp 563–588

    Google Scholar 

  105. Sauvant P, Sapin V, Alexandre-Gouabau MC, Dodeman I, Delpal S, Quadro L, Partier A, Abergel A, Colantuoni V, Rock E, Azais-Braesco V (2001) Retinol mobilization from cultured rat hepatic stellate cells does not require retinol binding protein synthesis and secretion. Int J Biochem Cell Biol 33:1000–1012

    Article  CAS  PubMed  Google Scholar 

  106. Schweigert FJ (1988) Insensitivity of dogs to the effects of nonspecific bound vitamin A in plasma. Int J Vitam Nutr Res 58:23–25

    CAS  PubMed  Google Scholar 

  107. Seeliger MW, Biesalski HK, Wissinger B, Gollnick H, Gielen S, Frank J, Beck S, Zernner E (1999) Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Invest Ophthalmol Vis Sci 40:3–11

    CAS  PubMed  Google Scholar 

  108. Seino Y, Miki T, Kiyonari H, Abe T, Fujimoto W, Kimura K, Takeuchi A, Takahashi Y, Oiso Y, Iwanaga T, Seino S (2008) ISX participates in the maintenance of vitamin A metabolism by regulation of β-carotene 15,15′-monooxygenase (Bcmo1) expression. J Biol Chem 283:4905–4911

    Article  CAS  PubMed  Google Scholar 

  109. Senoo H, Stang E, Nilsson A, Kindberg GM, Berg T, Roos N, Norum KR, Blomhoff R (1990) Internalization of retinol-binding protein in parenchymal and stellate cells of rat liver. J Lipid Res 31:1229–1239

    CAS  PubMed  Google Scholar 

  110. Senoo H, Smeland S, Malaba L, Bjerknes T, Stang E, Roos N, Berg T, Norum KR, Blomhoff R (1993) Transfer of retinol-binding protein from HepG2 human hepatoma cells to cocultured rat stellate cells. Proc Natl Acad Sci U S A 90:3616–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma RV, Mathur SN, Ganguly J (1976) Studies on the relative biopotencies and intestinal absorption of different apo-β-carotenoids in rats and chickens. Biochem J 158:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharma RV, Mathur SN, Dmitrovskii AA, Das RC (1976) Ganguly J:Studies on the metabolism of beta-carotene and apo-beta-carotenoids in rats and chickens. Biochem Biophys Acta 486:183–194

    Article  CAS  PubMed  Google Scholar 

  113. Soprano DR, Blaner WS (1994) Plasma retinol-binding protein. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine. Raven Press Ltd., New York, pp 257–281

    Google Scholar 

  114. Soprano DR, Pickett CB, Smith JE, Goodman DS (1981) Biosynthesis of plasma retinol-binding protein in liver as a larger molecular weight precursor. J Biol Chem 256:8256–8258

    CAS  PubMed  Google Scholar 

  115. Soprano DR, Soprano KJ, Goodman DS (1986) Retinol-binding protein messenger RNA levels in the liver and in extrahepatic tissues of the rat. J Lipid Res 27:166–171

    CAS  PubMed  Google Scholar 

  116. Sporn MB, Dunlop NM, Newton DL, Smith JM (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35:1332–1338

    CAS  PubMed  Google Scholar 

  117. Suhara A, Kato M, Kanai M (1990) Ultrastructural localization of plasma retinol-binding protein in rat liver. J Lipid Res 31:1669–1681

    CAS  PubMed  Google Scholar 

  118. Sun H, Kawaguchi R (2011) The membrane receptor for plasma retinol-binding protein, a new type of cell-surface receptor. Int Rev Cell Mol Biol 288:1–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun G, Alexson SE, Harrison EH (1997) Purification and characterization of a neutral, bile salt-independent retinyl ester hydrolase from rat liver microsomes. Relationship to rat carboxylesterase ES-2. J Biol Chem 272:24488–24493

    Article  CAS  PubMed  Google Scholar 

  120. Tang GW, Wang XD, Russell RM, Krinsky NL (1991) Characterization of beta-apo-13-carotenone and beta-apo-14′-carotenal as enzymatic products of the excentric cleavage of beta-carotene. Biochemistry 30:9829–9834

    Article  CAS  PubMed  Google Scholar 

  121. Tsutsumi C, Okuno M, Tannous L, Piantedosi R, Allan M, Goodman DS, Blaner WS (1992) Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem 267:1805–1810

    CAS  PubMed  Google Scholar 

  122. van Bennekum AM, Kako Y, Weinstock PH, Harrison EH, Deckelbaum RJ, Goldberg IJ, Blaner WS (1999) Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. J Lipid Res 40:565–574

    PubMed  Google Scholar 

  123. van Bennekum AM, Fisher EA, Blaner WS, Harrison EH (2000) Hydrolysis of retinyl esters by pancreatic triglyceride lipase. Biochemistry 39:4900–4906

    Article  PubMed  CAS  Google Scholar 

  124. van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P, Williams DL, Wettstein P, Schulthess G, Phillips MC, Hauser H (2005) Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry 44:4517–4525

    Article  PubMed  CAS  Google Scholar 

  125. Vogel S, Gamble MV, Blaner WS (1999) Retinoid uptake, metabolism and transport. In: Nau H, Blaner WS (eds) Handbook of experimental pharmacology, the retinoids. Springer Verlag, Berlin/Heidelberg, New York, pp 31–95

    Google Scholar 

  126. von Lintig J (2010) Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 30:35–56

    Article  CAS  Google Scholar 

  127. Wald G (1968) Molecular basis of visual excitation. Science 162:230–239

    Article  CAS  PubMed  Google Scholar 

  128. Wang XD, Krinsky NI, Tang GW, Russell RM (1992) Retinoic acid can be produced from excentric cleavage of beta-carotene in human intestinal mucosa. Arch Biochem Biophys 293:298–304

    Article  CAS  PubMed  Google Scholar 

  129. Wei S, Episkopou V, Piantedosi R, Maeda S, Shimada K, Gottesman ME, Blaner WS (1995) Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem 270:866–870

    Article  CAS  PubMed  Google Scholar 

  130. Weiner FR, Blaner WS, Czaja MJ, Shah A, Geerts A (1992) Ito cell expression of a nuclear retinoic acid receptor. Hepatology 15:336–342

    Article  CAS  PubMed  Google Scholar 

  131. Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH, Blaner WS, Breslow JL, Fisher EA (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143–4149

    Article  CAS  PubMed  Google Scholar 

  132. Wongsiriroj N, Piantedosi R, Palczewski K, Goldberg IJ, Johnston TP, Li E, Blaner WS (2008) The molecular basis of retinoid absorption: a genetic dissection. J Biol Chem 283:13510–13519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wongsiriroj N, Jiang H, Piantedosi R, Yang KJ, Kluwe J, Schwabe RF, Ginsberg H, Goldberg IJ, Blaner WS (2014) Genetic dissection of retinoid esterification and accumulation in the liver and adipose tissue. J Lipid Res 55:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wyss A, Wirtz GM, Woggon WD, Brugger R, Wyss M, Friedlein A, Riss G, Bachmann H, Hunziker W (2001) Expression pattern and localization of beta, beta-carotene 15,15′-dioxygenase in different tissues. Biochem J 354:521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamada M, Blaner WS, Soprano DR, Dixon JL, Kjeldbye HM, Goodman DS (1987) Biochemical characteristics of isolated rat liver stellate cells. Hepatology 7:1224–1229

    Article  CAS  PubMed  Google Scholar 

  136. Yan W, Jang GF, Haeseleer F, Esumi N, Chang J, Kerrigan M, Campochiaro M, Campochiaro P, Palczewski K, Zack DJ (2001) Cloning and characterization of a human β, β-carotene-15, 15′-dioxygenase that is highly expressed in the retinal pigment epithelium. Genomics 72:193–202

    Article  CAS  PubMed  Google Scholar 

  137. Yen CL, Brown CHT, Monetti M, Farese RV Jr (2005) A human skin multifunctional o-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. J Lipid Res 46:2388–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Blaner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blaner, W.S., Li, Y., Brun, PJ., Yuen, J.J., Lee, SA., Clugston, R.D. (2016). Vitamin A Absorption, Storage and Mobilization. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling II. Subcellular Biochemistry, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0945-1_4

Download citation

Publish with us

Policies and ethics