Skip to main content

The Types of Functional and Structural Subdivisions of Cortical Areas

  • Chapter
Recent Advances on the Modular Organization of the Cortex
  • 1100 Accesses

Abstract

The term “cortical column” has been used to identify a number of different types of subdivisions of cortical areas. Here we describe and discuss several of these types of modular subdivisions in cortex, and suggest criteria for distinguishing these types. Minicolumns are narrow, vertical arrays of densely interconnected neurons that cross all cortical layers, and may represent a basic computational unit that is common to all cortical areas across mammalian species. Other types of columns are more variable across cortical areas and mammalian species, and have different developmental and evolutionary functions and histories. Classical columns are so named because they correspond to the column type first described by Mountcastle (J Neurophysiol 20:408–434, PMID 13439410, 1957), and consist of larger alternating patches of cortex that span all cortical layers, and contain neurons that have different response properties from those of neurons in adjoining columns. Several types of classical columns have been identified, and evidence for more types will likely emerge with further investigation. Classical columns divide cortical areas into sets of functionally specialized modules. A third type of cortical subdivision, unbounded columns, collectively represent a continuously varied stimulus dimension, such as the orientation of a bar or line, across a cortical area. Thus, vertical rows of neurons across a patch of cortex representing a small portion of the visual field will vary continuously in the orientation of a stimulus bar that best activates them, and there are no obvious borders between rows of neurons that prefer one orientation and adjoining rows that prefer a slightly different orientation. Other continuously variable stimuli such as color are likely to be represented by unbounded columns as well. A fourth type of cortical column consists of adjoining blocks of neurons that represent different parts of the receptor surface. The ocular dominance columns in primary visual cortex constitute a well-known example, where blocks of neurons are activated preferentially by one eye or the other. The banded representation of digits in somatosensory cortex of monkeys and raccoons provide another example. Lastly, cortical areas are sometimes divided into specialized regions or domains that are distinct from one another and do not repeat across the cortical surface. Such domains appear to exist in motor and premotor cortex, posterior parietal cortex, and temporal visual cortex of primates. Finally, we address questions of how columns emerge in development, and how mechanisms for their development evolved. Clearly there are genetic factors, especially for those that control activity-dependent neural mechanisms of synapse formation and selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DL, Horton JC (2003) Capricious expression of cortical columns in the primate brain. Nat Neurosci 6:113–114. PMID 12536211

    CAS  PubMed  Google Scholar 

  • Adelsberger H, Zainos A, Alvarez M et al (2014) Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates. Proc Natl Acad Sci U S A 111:463–468. PMID 24344287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31:85–105. PMID 4998922

    CAS  PubMed  Google Scholar 

  • Allman JM, Kaas JH (1974) A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Res 81:199–213. PMID 4215542

    CAS  PubMed  Google Scholar 

  • Allman J, Zucker S (1990) Cytochrome oxidase and functional coding in primate striate cortex: a hypothesis. Cold Spring Harb Symp Quant Biol 55:979–982. PMID 1966774

    CAS  PubMed  Google Scholar 

  • Alloway KD (2008) Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 18:979–989. PMID 17702950

    PubMed  Google Scholar 

  • Anderson PA, Olavarria J, Van Sluyters RC (1988) The overall pattern of ocular dominance bands in cat visual cortex. J Neurosci 8:2183–2200. PMID 3385494

    CAS  PubMed  Google Scholar 

  • Angelucci A, Levitt JB, Walton EJ et al (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646. PMID 12351737

    CAS  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541. PMID 19226510

    PubMed  Google Scholar 

  • Balaram P, Takahata T, Kaas JH (2011) VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). Eye Brain 3:5–15. PMID 22984342

    CAS  Google Scholar 

  • Beck PD, Kaas JH (1998) Cortical connections of the dorsomedial visual area in New World owl monkeys (Aotus trivirgatus) and squirrel monkeys (Saimiri sciureus). J Comp Neurol 400:18–34. PMID 9762864

    CAS  PubMed  Google Scholar 

  • Belgard TG, Marques AC, Oliver PL et al (2011) A transcriptomic atlas of mouse neocortical layers. Neuron 71:605–616. PMID 21867878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernard A, Lubbers LS, Tanis KQ et al (2012) Transcriptional architecture of the primate neocortex. Neuron 73:1083–1099. PMID 22445337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12:3139–3161. PMID 1322982

    CAS  PubMed  Google Scholar 

  • Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431. PMID 1896085

    CAS  PubMed  Google Scholar 

  • Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189. PMID 16022593

    CAS  PubMed  Google Scholar 

  • Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112–2127. PMID 9045738

    CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Gro hirnrinde. Verlag von Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Bryant KL, Suwyn C, Reding KM et al (2012) Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry. Brain Behav Evol 80:210–221. PMID 22889767

    PubMed Central  PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951. PMID 11960884

    PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 97:7–17. PMID 10771070

    CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Litaker M et al (2001) Morphological differences between minicolumns in human and nonhuman primate cortex. Am J Phys Anthropol 115:361–371. PMID 11471134

    CAS  PubMed  Google Scholar 

  • Carroll EW, Wong-Riley M (1984) Quantitative light and electron microscopic analysis of cytochrome-oxidase rich zones in the striate cortex of the squirrel monkey. J Comp Neurol 1:1–17. PMID 6321561

    Google Scholar 

  • Casagrande VA, Kaas JH (1994) The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In: Peters A, Rockland KS (eds) Cerebral cortex: primary visual cortex of primates, vol 10., pp 201–259

    Google Scholar 

  • Catania KC, Kaas JH (1995) Organization of the somatosensory cortex of the star-nosed mole. J Comp Neurol 351:549–567. PMID 7721983

    CAS  PubMed  Google Scholar 

  • Cerkevich CM, Qi HX, Kaas JH (2013) Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. J Comp Neurol 521:3768–3790. PMID 23873330

    Google Scholar 

  • Constantine-Paton M, Law MI (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–641. PMID 309179

    CAS  PubMed  Google Scholar 

  • Cooke DF, Taylor CS, Moore T, Graziano MS (2003) Complex movements evoked by microstimulation of the ventral intraparietal area. Proc Natl Acad Sci 100:6163–6168. PMID 12719522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooke DF, Padberg J, Zahner T, Krubitzer L (2012) The functional organization and cortical connections of motor cortex in squirrels. Cereb Cortex 22:1959–1978. PMID 22021916

    PubMed Central  PubMed  Google Scholar 

  • Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol 77:3381–3385. PMID 11135259

    CAS  PubMed  Google Scholar 

  • Cusick CG, Steindler DA, Kaas JH (1985) Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: a double-labeling study with radiolabeled wheatgerm agglutinin and wheatgerm agglutinin conjugated to horseradish peroxidase. Somatosens Res 3:1–31. PMID 4070891

    CAS  PubMed  Google Scholar 

  • Da Costa NM, Martin KA (2010) Whose cortical column would that be? Front Neuroanat. Ecollection 2010. PMID 20640245

    Google Scholar 

  • Dawson DR, Killackey HP (1987) The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat. J Comp Neurol 256:246–256. PMID 3558880

    CAS  PubMed  Google Scholar 

  • DeYoe EA, Van Essen DC (1985) Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317:58–61. PMID 2413132

    CAS  PubMed  Google Scholar 

  • Dykes RW, Rasmusson DD, Hoeltzell PB (1980) Organization of primary somatosensory cortex in the cat. J Neurophysiol 43:1527–1546. PMID 7411175

    Google Scholar 

  • Ebner FF, Kaas JH (2015) Somatosensory system. In: Paxinos G (ed) The rat nervous system, vol 4. Elsevier Sciences, Academic Press, Oxford, pp 673–699

    Google Scholar 

  • Eccles JC (1981) The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 6:1839–1855. PMID 7301112

    Google Scholar 

  • Erzurumlu RS, Kind PC (2001) Neural activity: sculptor of ‘barrels’ in the neocortex. Trends Neurosci 24:589–595. PMID 11576673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Favorov OV, Diamond ME (1990) Demonstration of discrete place-defined columns – segregates – in the cat S1. J Comp Neurol 298:97–112. PMID 2212100

    CAS  PubMed  Google Scholar 

  • Federer F, Williams D, Ichida JM et al (2013) Two projection streams from macaque V1 to the pale cytochrome oxidase stripes of V2. J Neurosci 33:11530–11539. PMID 23843523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6:329–341. PMID 8670661

    CAS  PubMed  Google Scholar 

  • Flash T, Hochner B (2005) Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol 15:660–666. PMID 16275056

    CAS  PubMed  Google Scholar 

  • Florence SL, Kaas JH (1992) Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: complete reconstructions and quantitative analyses. Vis Neurosci 8:449–452. PMID 1375096

    CAS  PubMed  Google Scholar 

  • Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851. PMID 21051642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman RM, Chen LM, Roe AW (2004) Modality maps within primate somatosensory cortex. Proc Natl Acad Sci 101:12724–12729. PMID 15308779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ (2013) Distribution of the vesicular glutamate transporter 2 (VGLUT2) in the primary visual cortex of the macaque and human. J Comp Neurol 521:130–151. PMID 22684983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gattas SR, Sousa AP, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 8:1831–1845. PMID 3385477

    Google Scholar 

  • Gharbawie OA, Stepniewska I, Kaas JH (2011a) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21:1981–2002. PMID 21263034

    PubMed Central  PubMed  Google Scholar 

  • Gharbawie OA, Stepniewska I, Qi H, Kaas JH (2011b) Multiple parietal-frontal pathways mediate grasping in macaque monkeys. J Neurosci 31:11660–11677. PMID 21832196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122:393–413. PMID 402978

    CAS  PubMed  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598. PMID 42062

    CAS  PubMed  Google Scholar 

  • Gould HJ 3rd, Cusick CG, Pons TP, Kaas JH (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol 247:297–325. PMID 3722441

    PubMed  Google Scholar 

  • Graziano MSA (2010) Ethologically relevant movements mapped on the motor cortex. In: Platt ML, Ghazantos AA (eds) Primate neuroethology. Oxford University Press, Oxford, pp 454–470

    Google Scholar 

  • Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851. PMID 12062029

    CAS  PubMed  Google Scholar 

  • Graziano MS, Aflalo TN, Cooke DF (2005) Arm movements evoked by electrical stimulation in the motor cortex of monkeys. J Neurophysiol 94:4209–4223. PMID 16120657

    PubMed  Google Scholar 

  • Grill-spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677. PMID 15217346

    CAS  PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233. PMID 10827445

    PubMed  Google Scholar 

  • Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond Ser B Biol Sci 360:837–862. PMID 15937015

    Google Scholar 

  • Horton JC, Hedley-Whyte ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond Ser B Biol Sci 304:255–272. PMID 6142485

    CAS  Google Scholar 

  • Horton JC, Hocking DR (1996) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci 16:7228–7239. PMID 8929431

    CAS  PubMed  Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764. PMID 6267472

    CAS  PubMed  Google Scholar 

  • Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415, PMID 2824714

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568. PMID 13955384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243. PMID 4966457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450. PMID 4117368

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59. PMID 20635

    CAS  PubMed  Google Scholar 

  • Imig TJ, Adrián HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138:241–257. PMID 589474

    CAS  PubMed  Google Scholar 

  • Issa NP, Trachtenberg JT, Chapman B et al (1999) The critical period for ocular dominance plasticity in the Ferret’s visual cortex. J Neurosci 19:6965–6978. PMID 10436053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain N, Catania KC, Kaas JH (1998) A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. Cereb Cortex 8:227–236. PMID 9617917

    CAS  PubMed  Google Scholar 

  • Kaas JH (1982) Why do sensory systems have so many subdivisions? In: Neff WD (ed) Contributions to sensory physiology, vol 7. Academic, New York, pp 201–240

    Google Scholar 

  • Kaas JH (1990) Processing areas and modules in the sensory-perceptual cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Signal and source: local and global order in perceptual maps. Wiley, New York, pp 67–82

    Google Scholar 

  • Kaas JH (2008) The evolution of the complex sensory and motor systems of the human brain. Brain Res Bull 75:384–390. PMID 18331903

    PubMed Central  PubMed  Google Scholar 

  • Kaas JH (2011) Somatosensory system. In: Mai JK, Paxinos G (eds) The human nervous system, vol 3. Elsevier, London, pp 1064–1099

    Google Scholar 

  • Kaas JH (2012a) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci 109(Suppl 1):10655–10660. PMID 22723351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaas JH (2012b) The evolution of neocortex in primates. Prog Brain Res 195:91–102. PMID 22230624

    PubMed Central  PubMed  Google Scholar 

  • Kaas JH (2013) The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4:33–45. PMID 23529256

    PubMed Central  PubMed  Google Scholar 

  • Kaas JH, Catania KC (2002) How do features of sensory representations develop? Bioessays 24:334–343. PMID 11948619

    PubMed  Google Scholar 

  • Kaas JH, Lyon DC (2001) Visual cortex organization in primates: theories of V3 and adjoining visual areas. Prog Brain Res 134:285–295. PMID 11702549

    CAS  PubMed  Google Scholar 

  • Kaas JH, Morel A (1993) Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST. J Neurosci 13:534–546. PMID 8381166

    CAS  PubMed  Google Scholar 

  • Kaas JH, Guillery RW, Allman JM (1972) Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav Evol 6:253–299. PMID 4196831

    CAS  PubMed  Google Scholar 

  • Kaas JH, Lin CS, Casagrande VA (1976) The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study. Brain Res 106:371–378

    CAS  PubMed  Google Scholar 

  • Kaas JH, Qi HX, Iyengar S (2006) Cortical network for representing the teeth and tongue in primates. Anat Rec A Discov Mol Cell Evol Biol 288:182–190. PMID 16411246

    PubMed  Google Scholar 

  • Kaas JH, Gharbawie OA, Stepniewska I (2011) The organization and evolution of dorsal stream multisensory motor pathways in primates. Front Neuroanat. eCollection 2011. PMID 21716641

    Google Scholar 

  • Kaschube M, Schnabel M, Löwel S et al (2010) Universality in the evolution of orientation columns in the visual cortex. Science 330:1113–1116. PMID 21051599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaskan PM, Lu HD, Dillenburger BC et al (2007) Intrinsic-signal optical imaging reveals cryptic ocular dominance columns in primary visual cortex of New World owl monkeys. Front Neurosci 1:67–75. PMID 18974855

    PubMed Central  PubMed  Google Scholar 

  • Kaskan PM, Lue HD, Dillenburger BC, Kaas JH, Roe AW (2009) The organization of orientation-selective, luminance-change and binocular-preference domains in the second (V2) and third (V3) visual areas of New World owl monkeys as revealed by intrinsic signal optical imaging. Cereb Cortex 19:1394–1407. PMID 18842661

    PubMed Central  PubMed  Google Scholar 

  • Kaskan PM, Dillenburger BC, Lu HD et al (2010) Orientation and direction-of-motion response in the middle temporal visual area (MT) of New World owl monkeys as revealed by intrinsic signal optical imaging. Front Neuroanat. Ecollection 2010. PMID 20661299

    Google Scholar 

  • Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3:34–42. PMID 11823803

    CAS  PubMed  Google Scholar 

  • Krieger P, Kuner T, Sakmann B (2007) Synaptic connections between layer 5B pyramidal neurons in mouse somatosensory cortex are independent of apical dendrite bundling. J Neurosci 27:11473–11482. PMID 17959790

    CAS  PubMed  Google Scholar 

  • Krubitzer L (1995) The organization of neocortex in mammals: are species differences really so different? Trends Neurosci 18:408–417. PMID 7482807

    CAS  PubMed  Google Scholar 

  • Krubitzer L, Kaas JH (1993) The dorsomedial visual area (DM) of owl monkeys: connections, myeloarchitecture, and homologies in other primates. J Comp Neurol 33:497–528

    Google Scholar 

  • Krubitzer L, Kaas JH (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453. PMID 16026978

    CAS  PubMed  Google Scholar 

  • Krubitzer L, Manger P, Pettigrew J, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306. PMID 7699113

    CAS  PubMed  Google Scholar 

  • Krubitzer L, Künzle H, Kaas JH (1997) Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). J Comp Neurol 379(3):399–414

    CAS  PubMed  Google Scholar 

  • Krubitzer L, Huffman KJ, Disbrow E, Recanzone G (2004) Organization of area 3a in macaque monkeys: contributions to the cortical phenotype. J Comp Neurol 471:97–111. PMID 14983479

    PubMed  Google Scholar 

  • Lachica EA, Beck PD, Casagrande VA (1992) Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Natl Acad Sci 89:3566–3570, PMID 1314392

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113:1–19. PMID 953720

    CAS  PubMed  Google Scholar 

  • Leyton ASF, Sherrington CS (1917) Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Exp Physiol 11:135–222

    Google Scholar 

  • Li M, Liu F, Juusola M, Tang S (2014) Perceptual color map in macaque visual area V4. J Neurosci 34:202–217. PMID 24381282

    CAS  PubMed  Google Scholar 

  • Liao CC, Gharbawie OA, Qi HX, Kaas JH (2013) Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos. J Comp Neurol 521:3768–3790. PMID 23749740

    PubMed Central  PubMed  Google Scholar 

  • Livingstone MS (1996) Ocular dominance columns in New World monkeys. J Neurosci 16:2086–2096. PMID 8604053

    CAS  PubMed  Google Scholar 

  • Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356. PMID 6198495

    CAS  PubMed  Google Scholar 

  • Livingstone MS, Hubel DH (1987) Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. J Neurosci 7:3371–3377. PMID 2824713

    CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1949) Physiology of the nervous system. In: Fulton DS (ed) The cerebral cortex: architecture, intracortical connections, motor projections. Oxford University Press, London

    Google Scholar 

  • Löwel S, Singer W (1987) The pattern of ocular dominance columns in flat-mounts of the cat visual cortex. Exp Brain Res 68:661–666. PMID 3691734

    PubMed  Google Scholar 

  • Malonek D, Tootell RB, Grinvald A (1994) Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc Biol Sci 258:109–119. PMID 7838851

    CAS  PubMed  Google Scholar 

  • Manger P, Sum M, Szymanski M, Ridgway SH, Krubitzer L (1998) Modular subdivisions of dolphin insular cortex: does evolutionary history repeat itself. J Cogn Neurosci 10:153–166. PMID 9555104

    CAS  PubMed  Google Scholar 

  • Mashiko H, Yoshida AC, Kikuchi SS et al (2012) Comparative anatomy of marmoset and mouse cortex from genomic expression. J Neurosci 32:5039–5053. PMID 22496550

    CAS  PubMed  Google Scholar 

  • McKenna TM, Whitsel BL, Dreyer DA (1982) Anterior parietal cortical topographic organization in macaque monkey: a reevaluation. J Neurophysiol 48:289–317

    CAS  PubMed  Google Scholar 

  • Merlin S, Horng S, Marotte LR et al (2013) Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex. Cereb Cortex 23:764–774. PMID 22499796

    Google Scholar 

  • Meyer HS, Egger R, Guest JM et al (2013) Cellular organization of cortical barrel columns is whisker-specific. Proc Natl Acad Sci 110:19113–19118. PMID 24101458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (A1) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res 181:31–48. PMID 7350963

    CAS  PubMed  Google Scholar 

  • Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359. PMID 18535247

    CAS  PubMed  Google Scholar 

  • Molnár Z (2013) Cortical columns. In: Comprehensive developmental neuroscience: neural circuit development and function in the brain, vol 3. Elsevier, London, pp 109–129

    Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434. PMID 13439410

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722. PMID 9153131

    PubMed  Google Scholar 

  • Murphy KM, Jones DG, Van Sluyters RC (1995) Cytochrome oxidase blobs in cat primary visual cortex. J Neurosci 15:4196–4208. PMID 7790905

    CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Philos Trans R Soc Lond B Biol Sci 355:1755–1769. PMID 11205339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelissen K, Luppino G, Vanduffel W et al (2005) Observing others: multiple action representation in the frontal lobe. Science 310:332–336. PMID 16224029

    CAS  PubMed  Google Scholar 

  • Olavarria JF (2001) Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone. J Comp Neurol 433:441–457

    CAS  PubMed  Google Scholar 

  • Olavarria JF, Van Essen DC (1997) The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cereb Cortex 7:395–404. PMID 9261570

    CAS  PubMed  Google Scholar 

  • Pinsk MA, DeSimone K, Moore T et al (2005) Representation of faces and body parts in macaque temporal cortex: a functional fMRI study. Proc Natl Acad Sci 102:6996–7001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pons TP, Garraghty PE, Cusick CG, Kaas JH (1985) The somatotopic organization of area 2 in macaque monkeys. J Comp Neurol 241:445–466

    CAS  PubMed  Google Scholar 

  • Pons TP, Wall JT, Garraghty PE et al (1987) Consistent features of the representation of the hand in area 3b of macaque monkeys. Somatosens Res 4:309–331. PMID 3589287

    CAS  PubMed  Google Scholar 

  • Powell TP, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162. PMID 14434571

    CAS  PubMed  Google Scholar 

  • Preuss TM, Kaas JH (1996) Cytochrome oxidase ‘blobs’ and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. Brain Behav Evol 47:103–112. PMID 8866707

    CAS  PubMed  Google Scholar 

  • Purves D, Riddle DR, LaMantia AS (1992) Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci 15:362–368. PMID 1279855

    CAS  PubMed  Google Scholar 

  • Qi HX, Kaas JH (2004) Myelin stains reveal an anatomica framework for the representation of the digits in somatosensory are 3b of macaque monkeys. J Comp Neurol 477:172–187. PMID 15300788

    PubMed  Google Scholar 

  • Qi HX, Gharbawie OA, Wong P, Kaas JH (2011) Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol 519:738–758. PMID 21246552

    PubMed Central  PubMed  Google Scholar 

  • Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55:204–219. PMID 17467805

    PubMed Central  PubMed  Google Scholar 

  • Rao SC, Toth LJ, Sur M (1997) Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets. J Comp Neurol 387:358–370. PMID 9335420

    CAS  PubMed  Google Scholar 

  • Rockland KS (2010) Five points on columns. Front Neuroanat. eCollection 2010. PMID 20589097

    Google Scholar 

  • Rockoff EC, Balaram P, Kaas JH (2014) Patchy distributions of myelin and VGLUT2 align with cytochrome oxidase blobs and interblobs in the superficial layers of primary visual cortex. Eye Brain 6:19–27

    Google Scholar 

  • Roe AW, Tso DY (1995) Visual topography in primate V2: multiple representation across functional stripes. J Neurosci 15:3689–3715. PMID 7751939

    CAS  PubMed  Google Scholar 

  • Roe AW, Fritsches K, Pettigrew JD (2005) Optical imaging of functional organization of V1 and V2 in marmoset visual cortex. Anat Rec A: Discov Mol Cell Evol Biol 287:1213–1225. PMID 16235264

    Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2102–2108. PMID 11600665

    Google Scholar 

  • Shatz CJ (1996) Emergence of order in visual system development. Proc Natl Acad Sci 93:602–608. PMID 8570602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shipp S, Zeki S (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of monkey visual cortex. Nature 315:322–325. PMID 2987702

    CAS  PubMed  Google Scholar 

  • Shostak Y, Ding Y, Mavity-Hudson J, Casagrande VA (2002) J Neurosci 22:2885–2893. PMID 11923453

    CAS  PubMed  Google Scholar 

  • Sincich LC, Horton JC (2002) Divided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science 295:1734–1737. PMID 11872845

    CAS  PubMed  Google Scholar 

  • Stepniewska I, Collins CE, Kaas JH (2005a) Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. Cereb Cortex 15:809–822. PMID 15459077

    PubMed  Google Scholar 

  • Stepniewska I, Fang PC, Kaas JH (2005b) Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc Natl Acad Sci 102:4878–4883. PMID 15772167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stepniewska I, Gharbawie OA, Burish MJ, Kaas JH (2014) Effects of muscimol inactivations of functional domains in motor, premotor, and posterior parietal cortex on complex movements evoked by electrical stimulation. J Neurophysiol 111:1100–1119. PMID 24353298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sur M, Wall JT, Kaas JH (1981) Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212:1059–1061. PMID 7233199

    CAS  PubMed  Google Scholar 

  • Sur M, Wall JT, Kaas JH (1984) Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J Neurophysiol 51:724–744. PMID 6716121

    CAS  PubMed  Google Scholar 

  • Szentágothai J (1975) The ‘module-concept’ in cerebral cortex architecture. Brain Res 95:475–496. PMID 808252

    PubMed  Google Scholar 

  • Takahata T, Higo N, Kaas JH, Yamamori T (2009) Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation. Proc Natl Acad Sci 106:12151–12155. PMID 19581597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahata T, Miyashita M, Tanaka S, Kaas JH (2014) Identification of ocular dominance domains in New World owl monkeys by immediate-early gene expression. Proc Natl Acad Sci USA 111:4297–4302

    Google Scholar 

  • Tanaka S (1991) Theory of ocular dominance column formation. Mathematical basis and computer simulation. Biol Cybern 64:263–272. PMID 2025659

    CAS  PubMed  Google Scholar 

  • Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clusters of cells with similar but slightly different stimulus selectivities. Cereb Cortex 13:90–99. PMID 12466220

    PubMed  Google Scholar 

  • Tanigawa H, Lu HD, Roe AW (2010) Functional organization for color and orientation in macaque V4. Nat Neurosci 13:1542–1548. PMID 21076422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Towe AL (1975) Notes on the hypothesis of columnar organization in somatosensory cerebral cortex. Brain Behav Evol 11:16–47. PMID 1174930

    CAS  PubMed  Google Scholar 

  • Tsao DY, Freiwald WA, Knutsen TA et al (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995. PMID 12925854

    CAS  PubMed  Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci 105:19514–19519. PMID 19033466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van der Loos H, Dörfl J (1978) Does the skin tell the somatosensory cortex how to construct a map of the periphery? Neurosci Lett 7:23–30. PMID 19605083

    PubMed  Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL et al (2012) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22:2241–2262. PMID 22047963

    PubMed Central  PubMed  Google Scholar 

  • Van Hooser SD (2007) Similarity and diversity in visual cortex: is there a unifying theory of cortical computation? Neuroscientist 13:639–656. PMID 17911223

    Google Scholar 

  • Van Hooser SD, Heimel JA, Chung S et al (2005) Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. J Neurosci 25:19–28. PMID 15634763

    PubMed  Google Scholar 

  • Waite PM, Marotte LR, Leamey CA, Mark RF (1998) Development of whisker-related patterns in marsupials: factors controlling timing. Trends Neurosci 21:265–269. PMID 9641540

    Google Scholar 

  • Welker WI, Seidenstein S (1959) Somatic sensory representation in the cerebral cortex of the raccoon (Procyon lotor). J Comp Neurol 111:469–501. PMID 13843838

    CAS  PubMed  Google Scholar 

  • White LE, Bosking WH, Williams SM, Fitzpatrick D (1999) Maps of central visual space in ferret V1 and V2 lack matching inputs from the two eyes. J Neurosci 19:7089–7099. PMID 10436063

    CAS  PubMed  Google Scholar 

  • White LE, Bosking WH, Fitzpatrick D (2001) Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex. Vis Neurosci 18:65–76. PMID 11347817

    CAS  PubMed  Google Scholar 

  • Wong P, Kaas JH (2009) An architectonic study of the neocortex of the short-tailed opossum (Monodelphis domestica). Brain Behav Evol 73:206–228. PMID 19546531

    PubMed Central  PubMed  Google Scholar 

  • Wong P, Kaas JH (2010) Architectonic subdivisions of the neocortex in the Galago (Otolemur garnetti). Anat Rec 293:1033–1069. PMID 20201060

    Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–29. PMID 104776

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242. PMID 4904874

    CAS  PubMed  Google Scholar 

  • Xu X, Bosking W, Sáry G et al (2004) Functional organization of visual cortex in the owl monkey. J Neurosci 24:9213–9214. PMID 15254078

    CAS  Google Scholar 

  • Xu X, Collins CE, Khaytin I et al (2006) Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area. Proc Natl Acad Sci 103:17490–17495. PMID 17088527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu YC, Bultje RS, Wang X, Shi SH (2009) Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458:501–504. PMID 19204731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeki SM (1973) Colour coding in rhesus monkey prestriate cortex. Brain Res 53:422–427. PMID 4196224

    CAS  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2005) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat 205:417–432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon H. Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaas, J.H., Balaram, P. (2015). The Types of Functional and Structural Subdivisions of Cortical Areas. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_4

Download citation

Publish with us

Policies and ethics