Skip to main content

Biogeochemical Effects and Climate Feedbacks of Aerosols

  • Chapter
  • First Online:
Book cover Atmospheric Aerosols

Abstract

Aerosols have a climate impact through aerosol–radiation interactions and aerosol–cloud interactions, but can also interact with a number of biogeochemical cycles and have an impact on ecosystems. Physical and biological processes are sources of aerosols that can be modified by climate change, allowing for the possibility for climate feedback loops that can play a role in natural climate variability. This chapter provides a short description of some of the processes involved in these biogeochemical effects, such as the impact of aerosols on diffuse radiation at the surface and photosynthesis by terrestrial ecosystems, deposition of nutrients, and acidification. It is followed by a discussion of possible feedback loops involving aerosols, looking separately at the different aerosol species such as sulphate aerosols from dimethylsulphide, sea spray, secondary organic aerosols, biomass burning aerosols, and desert dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald S, Staver AC, Levin SA (2011) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci U S A 109:847–852

    Article  Google Scholar 

  • Arneth A, Miller PA, Scholze M, Hickler T, Schurges G, Smith B, Prentice IC (2007) CO2inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry. Geophys Res Lett 34:L1881–3. doi:10.1029/2007GL030615

    Google Scholar 

  • Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian KJ, Carslaw KS, Dobbie S, O’Sullivan D, Malkin TS (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498:355–358

    Article  Google Scholar 

  • Ayers GP, Cainey JM (2007) The CLAW hypothesis: a review of the major developments. Environ Chem 4:366–374

    Article  Google Scholar 

  • Bauer SE, Balkanski Y, Schulz M, Hauglustaine DA, Dentener F (2004) Global modeling of heterogeneous chemistry on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations. J Geophys Res 109:D0230–4. doi:10.1029/2003JD003868

    Google Scholar 

  • Bopp L, Boucher O, Aumont O, Belviso S, Dufresne J-L, Pham M, Monfray P (2004) Will marine dimethylsulphide emissions alleviate global warming\(?\) A model study. Can J Fish Aquat Sci 61(5):826–835

    Article  Google Scholar 

  • Butchart N, Scaife AA (2001) Removal of chloroflurocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410:799–802

    Article  Google Scholar 

  • Cameron-Smith P, Elliott S, Maltrud M, Erickson D, Wingenter O (2011) Changes in dimethyl sulfide oceanic distribution due to climate change. Geophys Res Lett 38:L0770–4. doi:10.1029/2011GL047069

    Google Scholar 

  • Carslaw K, Boucher O, Spracklen DV, Mann G, Rae JGL, Woodward S, Kulmala M (2010) Aerosol in the earth system\(:\) a review of interactions and feedbacks. Atmos Chem Phys 10:1701–1737

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661

    Article  Google Scholar 

  • Chiapello I, Moulin C (2002) TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979–1997). Geophys Res Lett 29:117–6. doi:10.1029/ 2001GL13767

    Google Scholar 

  • Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889

    Article  Google Scholar 

  • Flannigan M, Campbell I, Wotton M, Carcaillet C, Richard P, Bergeron Y (2001) Future fire in Canada’s boreal forest\(:\) paleoecology results and general circulation model regional climate model simulations. Can J For Res 31:854–864

    Article  Google Scholar 

  • Flannigan MD, Loganv KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Change 72:1–16

    Article  Google Scholar 

  • Gabric AJ, Qu B, Matrai P, Hirst AC (2005) The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus 57B:391–403

    Article  Google Scholar 

  • Gauci V, Matthews E, Dise N, Walter B, Koch D, Granberg G, Vile M (2004) Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc Natl Acad Sci U S A 101:12583–12587

    Article  Google Scholar 

  • Gauci V, Dise NB, Howell G, Jenkins ME (2008) Suppression of rice methane emission by sulfate deposition in simulated acid rain. J Geophys Res 113:G00A0–7. doi:\refdoi10.1029/2007JG000501

    Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG300–5. doi:\refdoi10.1029/2012RG000388

    Article  Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption\(:\) enhanced photosynthesis. Science 299:2035–2038

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  Google Scholar 

  • Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  Google Scholar 

  • Jones A, Haywood JM, Boucher O (2007) Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model HadGEM2-AML. J Geophys Res 112:D2021–1. doi:10.1029/2007JD008688

    Google Scholar 

  • Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans\(:\) a comparison of updated data sets and flux models. J Geophys Res 105:26973–26808

    Google Scholar 

  • Kloster S, Six KD, Feichter J, Maier-Reimer E, Roeckner E, Wetzel P, Stier P, Esch M (2007) Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J Geophys Res 112:G0300–5. doi:10.1029/2006JG000224

    Google Scholar 

  • Koren I, Kaufman YJ, Washington R, Todd MC, Rudich Y, Martins JV, Rosenfeld D (2006) The Bodélé depression\(:\) a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ Res Lett 1:01400–5. doi:10.1088/1748-9326/1/1/014005

    Article  Google Scholar 

  • Korhonen H, Carslaw KS, Forster PM, Mikkonen S, Gordon ND, Kokkola H (2010) Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys Res Lett 37:L0280–5. doi:10.1029/2009GL041320

    Google Scholar 

  • Krinner G, Boucher O, Balkanski Y (2006) Reduced glacial ice sheet extent in Northern Asia and Alaska owing to deposition of mineral dust on snow. Clim Dyn 27:613–625. doi:10.1007/s00382-006-0159-z

    Article  Google Scholar 

  • Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols\(:\) methodology and application. Atmos Chem Phys 10:7017–7039

    Article  Google Scholar 

  • Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem Cycles 25:GB100–4. doi:10.1029/2010GB003850

    Article  Google Scholar 

  • Larsen SH (2005) Solar variability, dimethyl sulphide, clouds and climate. Global Biogeochem Cycles 19:GB101–4. doi:10.1029/2004GB002333

    Article  Google Scholar 

  • Lathière J, Hewitt CN, Beerling DJ (2010) Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2concentration, climate, and land use. Global Biogeochem Cycles 24:GB100–4. doi:10.1029/2009GB003548

    Article  Google Scholar 

  • Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2sink due to recent climate change. Science 316:1735–1738

    Article  Google Scholar 

  • Likens GE, Bormann FH (1974) Acid rain\(:\) a serious regional environmental problem. Science 184:1176–1179

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19:GB402–5. doi\(:\)10.1029/2004GB002402

    Google Scholar 

  • Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111:D1020–2. doi:10.1029/2005JD006653

    Article  Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycles 22:GB402–6. doi:10.1029/2008GB003240

    Article  Google Scholar 

  • Mahowald N, Ward DS, Kloster S, Flanner MG, Heald CL, Heavens NG, Hess PG, Lamarque J-F, Chuang PY (2011) Aerosol impacts on climate and biogeochemistry. Annu Rev Environ Res 36:45–74

    Article  Google Scholar 

  • Makkonen R, Asmi A, Kerminen VM, Boy M, Arneth A, Guenther A, Kulmala M (2012) BVOC–aerosol–climate interactions in the global aerosol–climate model ECHAM5.5-HAM2. Atmos Chem Phys 12:10077–10096

    Article  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    Article  Google Scholar 

  • Mauldin III RL, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminen V-M, Kulmala M (2012) A new atmospherically relevant oxidant of sulphur dioxide. Nature 488:193–196

    Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Cox P (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  Google Scholar 

  • Middleton NJ (1985) Effect of drought on dust production in the Sahel. Nature 316:431–434

    Article  Google Scholar 

  • Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95

    Article  Google Scholar 

  • Moulin C, Chiapello I (2006) Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophys Res Lett 33:L1880–8. doi:10.1029/2006GL025923

    Google Scholar 

  • Multiza S, Heslop D, Pittauerova D, Fischer HW, Meyer I, Stuut J-B, Zabel M, Mollenhauer G, Collins JA, Kuhnert H, Schulz M (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466:226–228

    Article  Google Scholar 

  • Nienow AM, Roberts JT (2006) Heterogeneous chemistry of carbon aerosols. Annu Rev Phys Chem 57:105–128

    Article  Google Scholar 

  • O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud J-P (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680

    Article  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:GB200–5. doi:10.1029/2003GB002145

    Article  Google Scholar 

  • Paasonen P et al (2013) Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat Geosci 6:438–443

    Article  Google Scholar 

  • Palmer PI, Abbot DS, Fu TM, Jacob DJ (2006) Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J Geophys Res 111:D1231–5. doi10.1029/2005JD006689

    Google Scholar 

  • Penner JE, Andreae M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari G (2001) Aerosols, their direct and indirect effects, in\(:\) climate change 2001\(:\) The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by\(:\) J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden and D. Xiaosu, Cambridge University Press, UK, Chap 5, pp 289–348

    Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  Google Scholar 

  • Pe˜nuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Llusia L, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter ecosystems across the globe. Nat Commun 4:293–4. doi:10.1038/ncomms3934

    Google Scholar 

  • Price C, Rind D (1994) The impact of a 2 × CO2climate on lighting-caused fires. J Clim 7:1484–1494

    Article  Google Scholar 

  • Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56

    Article  Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132

    Article  Google Scholar 

  • Reichholf JH (1986) Is Saharan dust a major source of nutrients for the Amazonian rain forest\(?\) Stud Neotrop Fauna Environ 21:251–255

    Article  Google Scholar 

  • Rocha AV, Su H-B, Vogel CS, Schmid HP, Curtis PS (2004) Photosynthetic and water use efficiency responses to diffuse radiation by an aspen-dominated northern hardwood forest. For Sci 50:793–801

    Google Scholar 

  • Rodhe H, Dentener F, Schulz M (2002) The global distribution of acidifying wet deposition. Environ Sci Technol 36:4382–4388

    Article  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion\(:\) a review of concepts and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • Spracklen DV, Bonn B, Carslaw KS (2008a) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc A 366:4613–4626 doi:10.1098/rsta.2008.0201

    Article  Google Scholar 

  • Spracklen DV, Arnold SR, Sciare J, Carslaw KS, Pio C (2008b) Globally significant oceanic source of organic carbon aerosol. Geophys Res Lett 35:L1281–1. doi:10.1029/2008GL033359

    Google Scholar 

  • Stocks B, Fosberg M, Lynham T, Mearns L, Wotton B, Yang Q, Jin J, Lawrence K, Hartley G, Mason J, McKenney D (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Change 38:1–13

    Article  Google Scholar 

  • Thornton P, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2fertilization and climate variability. Global Biogeochem Cycles 21: GB402–8. doi:10.1029/2006GB002868

    Article  Google Scholar 

  • Unger N, Shindell DT, Koch DM, Streets DG (2006) Cross influences of ozone and sulfate precursor emissions changes on air quality and climate. Proc Natl Acad Sci U S A 103:4377–4380

    Article  Google Scholar 

  • Vallina SM, Simó R, Gassó S, de Boyer-Montégut C, del Rio E, Jurado E, Dachs J (2007) Analysis of a potential solar radiation dose-dimethylsulfide-cloud condensation nuclei link from globally mapped seasonal correlations. Global Biogeochem Cycles 21:GB200–4. doi:10.1029/2006GB002787

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Arellano AF, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Ni˜no/La Ni˜na period. Science 303:73–76

    Article  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaud J-N, Ciais P (2010) Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761

    Article  Google Scholar 

  • Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on Southern Ocean CO2uptake and implications for glacial atmospheric CO2. Nature 407:730–733

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–943

    Article  Google Scholar 

  • Woodhouse MT, Mann GW, Carslaw KS, Boucher O (2008) The impact of oceanic iron fertilization on cloud condensation nuclei. Atmos Environ 42:5728–5730

    Article  Google Scholar 

  • Woodhouse MT, Carslaw KS, Mann GW, Vallina SM, Vogt M, Halloran PR, Boucher O (2010) Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide. Atmos Chem Phys 10:7545–7559

    Article  Google Scholar 

  • Woodward S, Roberts DL, Betts RA (2005) A simulation of the effect of climate change-induced desertification on mineral dust aerosol. Geophys Res Lett 32:L1881–0. doi:10.1029/2005GL023482

    Google Scholar 

  • Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 333:451–455

    Article  Google Scholar 

Further Reading (Textbooks and Articles)

  • Fischer H, Siggaard-Andersen M-L, Ruth U, Röthlisberger R, Wolff E (2007) Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev Geophys 45:RG100–2. doi:10.1029/2005RG000192

    Article  Google Scholar 

  • Mahowald NM, Lamarque JF, Tie XX, Wolff E (2006) Sea-salt aerosol response to climate change: last glacial maximum, preindustrial, and doubled carbon dioxide climates. J Geophys Res 111:D0530–3. doi:10.1029/2005JD006459

    Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Boucher .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Netherlands

About this chapter

Cite this chapter

Boucher, O. (2015). Biogeochemical Effects and Climate Feedbacks of Aerosols. In: Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9649-1_11

Download citation

Publish with us

Policies and ethics