Skip to main content

Raphanus raphanistrum subsp. sativus

  • Chapter
  • First Online:
Edible Medicinal and Non Medicinal Plants

Abstract

Raphanus raphanistrum subsp. sativus (L.) Domin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abdou IA, Abou-Zeid AA, El-Sherbeeny MR, Abou-El-Gheat ZH (1972) Antimicrobial activities of Allium sativum, Allium cepa, Raphanus sativus, Capsicum frutescens, Eruca sativa, Allium kurrat on bacteria. Qual Plant Mater Veg 22(1):29–35

    CAS  Google Scholar 

  • Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13(4):243–247

    CAS  PubMed  Google Scholar 

  • Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IE, Madeo F, Santos R, Cammue BP, Thevissen K (2009) The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett 583(15):2513–2516

    CAS  PubMed  Google Scholar 

  • Afsharypuor S, Balam MH (2005) Volatile constituents of Raphanus sativus L. var. niger seeds. Essent Oil Res 17(4):440–441

    CAS  Google Scholar 

  • Ahmad F, Hasan I, Chishti DK, Ahmad H (2013) Antibacterial activity of Raphanus sativus Linn. seed extract. Glob J Med Res 12(11):25–28

    Google Scholar 

  • Ahn MJ, Koh RK, Kim GO, Shin TK (2013) Aqueous extract of purple Bordeaux radish, Raphanus sativus L. ameliorates ethanol-induced gastric injury in rats. Orient Pharm Exp Med 13(4):247–252

    Google Scholar 

  • Algasoumi S, Al-Yahya M, Al-Howiriny T, Rafatullah S (2008) Gastroprotective effect of radish “Raphanus sativus L”. on experimental models. Farmacia 56(2):204–214

    Google Scholar 

  • Al-Shebaz IA (1985) The genera of Brassicaceae in the southeastern United States. J Arnold Arboretum 66:279–351

    Google Scholar 

  • Alves AL, De Samblanx GW, Terras FR, Cammue BP, Broekaert WF (1994) Expression of functional Raphanus sativus antifungal protein in yeast. FEBS Lett 348(3):228–232

    CAS  PubMed  Google Scholar 

  • Anwar R, Mubasher Ahmad M (2006) Studies of Raphanus sativus as hepato protective agent. J Med Sci 6(4):662–665

    Google Scholar 

  • Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130(9):2243–2250

    CAS  PubMed  Google Scholar 

  • Aspart L, Cooke R, Delseny M (1979) Stability of polyadenylic and polyadenylated ribonucleic acids in radish (Raphanus sativus) seedlings. Biochim Biophys Acta 564(1):43–54

    CAS  PubMed  Google Scholar 

  • Aspart-Pascot L, Delseny M, Guitton Y (1976) Occurrence of nucleoside polyphosphates in rapidly labelled RNA preparations from radish seedlings (Raphanus sativus.). Planta 131(3):275–278

    CAS  PubMed  Google Scholar 

  • Bach TJ, Rogers DH, Rudney H (1986) Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings. Eur J Biochem 154(1):103–111

    CAS  PubMed  Google Scholar 

  • Baek SH, Park M, Suh JH, Choi HS (2008) Protective effects of an extract of young radish (Raphanus sativus L) cultivated with sulphur (sulfur-radish extract) and of sulforaphane on carbon tetrachloride induced hepatotoxicity. Biosci Biotechnol Biochem 72(5):1176–1182

    CAS  PubMed  Google Scholar 

  • Barillari J, Cervellati R, Paolini M, Tatibouët A, Rollin P, Iori R (2005) Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties. J Agric Food Chem 53(26):9890–9896

    CAS  PubMed  Google Scholar 

  • Barillari J, Cervellati R, Costa S, Guerra MC, Speroni E, Utan A, Iori R (2006) Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract. J Agric Food Chem 54(26):9773–9778

    CAS  PubMed  Google Scholar 

  • Barillari J, Iori R, Papi A, Orlandi M, Bartolini G, Gabbanini S, Pedulli GF, Valgimigli L (2008) Kaiware Daikon (Raphanus sativus L.) extract: a naturally multipotent chemopreventive agent. J Agric Food Chem 56(17):7823–7830

    CAS  PubMed  Google Scholar 

  • Beevi SS, Mangamoori LN, Dhand V, Ramakrishna DS (2009) Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L. Foodborne Pathog Dis 6(1):129–136

    CAS  PubMed  Google Scholar 

  • Beevi SS, Mangamoori LN, Subathra M, Edula JR (2010a) Hexane extract of Raphanus sativus L. roots inhibits cell proliferation and induces apoptosis in human cancer cells by modulating genes related to apoptotic pathway. Plant Foods Hum Nutr 65(3):200–209

    PubMed  Google Scholar 

  • Beevi SS, Narasu ML, Gowda BB (2010b) Polyphenolics profile, antioxidant and radical scavenging activity of leaves and stem of Raphanus sativus L. Plant Foods Hum Nutr 65(1):8–17

    CAS  PubMed  Google Scholar 

  • Beevi SS, Mangamoori LN, Gowda BB (2012) Polyphenolics profile and antioxidant properties of Raphanus sativus L. Nat Prod Res 26(6):557–563

    CAS  PubMed  Google Scholar 

  • Berger S, Menudier A, Julien R, Karamanos Y (1995) Endo-N-acetyl-beta-D-glucosaminidase and peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry 39(3):481–487

    CAS  PubMed  Google Scholar 

  • Bilyk A, Sapers GM (1985) Distribution of quercetin and kaempferol in lettuce, kale, chive, garlic chive, leek, horseradish, red radish, and red cabbage tissues. J Agric Food Chem 33(2):226–228

    CAS  Google Scholar 

  • Blažević I, Mastelić J (2009) Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem 113(1):96–102

    Google Scholar 

  • Bodson MJ, Outlaw WH, Silvers SH (1991) Malate content of picoliter samples of Raphanus sativus cytoplasm. J Histochem Cytochem 39(4):435–440

    CAS  PubMed  Google Scholar 

  • Brandl W, Herrmann K, Grothjahn L (1984) Hydroxycinnamoyl esters of malic acid in small radish Raphanus sativus L. var. sativus. Z Naturforsch Teil C 39:515–520

    Google Scholar 

  • Cai QY, Mo CH, Wu QT, Zeng QY (2008) Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application. Bioresour Technol 99(6):1830–1836

    CAS  PubMed  Google Scholar 

  • Capecka E (1998) Changes in thiocyanate content in some radish Raphanus sativus L. cultivars during hypocotyl-root growth. Acta Physiol Plant 20(2):135–142

    CAS  Google Scholar 

  • Carlson DG, Daxenbiehler ME, VanEtten CH, Hill CB, Williams PH (1985) Glucosinolates in radish cultivars. J Amer Soc Hort Sci 110(5):634–638

    CAS  Google Scholar 

  • Castro-Torres IG, Naranjo-Rodríguez EB, Domínguez-Ortíz MÁ, Gallegos-Estudillo J, Saavedra-Vélez MV (2012) Antilithiasic and hypolipidaemic effects of Raphanus sativus L. var. niger on mice fed with a lithogenic diet. J Biomed Biotechnol 2012:161205

    PubMed Central  PubMed  Google Scholar 

  • Castro-Torres IG, De la O-Arciniega M, Gallegos-Estudillo J, Naranjo-Rodríguez EB, Domínguez-Ortíz MÁ (2014) Raphanus sativus L. var niger as a source of phytochemicals for the prevention of cholesterol gallstones. Phytother Res 28(2):167–171

    CAS  PubMed  Google Scholar 

  • Chandra AK, Mukhopadhyay S, Lahari D, Tripathy S (2004) Goitrogenic content of Indian cyanogenic plant foods & their in vitro anti-thyroidal activity. Indian J Med Res 119(5):180–185

    CAS  PubMed  Google Scholar 

  • Chandra AK, Mukhopadhyay S, Ghosh D, Tripathy S (2006) Effect of radish (Raphanus sativus Linn.) on thyroid status under conditions of varying iodine intake in rats. Indian J Exp Biol 44(8):653–661

    CAS  PubMed  Google Scholar 

  • Chaturvedi P (2008) Inhibitory response of Raphanus sativus on lipid peroxidation in albino rats. Evid Based Complement Alternat Med 5(1):55–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaturvedi P, Machacha CN (2007) Efficacy of Raphanus sativus in the treatment of paracetamol-induced hepatotoxicity in albino rats. Br J Biomed Sci 64(3):105–108

    CAS  PubMed  Google Scholar 

  • Chaturvedi P, George S, Machacha CN (2007) Protective role of Raphanus sativus root extract on paracetamol-induced hepatotoxicity in albino rats. Int J Vitam Nutr Res 77(1):41–45

    CAS  PubMed  Google Scholar 

  • Chen SH, Lv GY, Zhang XD, Liu XY, Zhang H, Zhu YW, Wu Y, Liu SY, Ni ZN (2007) Anti-hypertensive effects of laiju extract in two different rat models. Asia Pac J Clin Nutr 16(Suppl 1):309–312

    PubMed  Google Scholar 

  • Chinese Pharmacopoeia Commission (2010) Pharmacopoeia of the People’s Republic of China, vol 1. Chinese Medical Science Press, Beijing, p 255

    Google Scholar 

  • Chong C, Bible B (1975) Influence of seed on thiocyanate content of radishes. J Sci Food Agric 26(1):105–108

    CAS  PubMed  Google Scholar 

  • Cocucci M, Negrini N (1988) Changes in the levels of calmodulin and of a calmodulin inhibitor in the early phases of radish (Raphanus sativus L.) seed germination: effects of aba and fusicoccin. Plant Physiol 88(3):910–914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahlbender B, Strack D (1984) Nitrogen nutrition and the accumulation of free and sinapoyl-bound malic acid in Raphanus sativus cotyledons. Planta 161(2):142–147

    CAS  PubMed  Google Scholar 

  • Damiani E, Aloia AM, Priore MG, Nardulli S, Ferrannini A (2011) Generalized urticaria after ingestion of Raphanus sativus. Ann Allergy Asthma Immunol 106(2):168

    PubMed  Google Scholar 

  • Dande P, Vaidya A, Arora P (2014) Laxative activity of Raphanus sativus L. leaf. Asian J Pharm Clin Res 7(2):120–124

    Google Scholar 

  • Devaraj VC, Krishna BG, Viswanatha GL (2011) Simultaneous determination of quercetin, rutin and kaempferol in the leaf extracts of Moringa oleifera Lam. and Raphanus sativus Linn. by liquid chromatography-tandem mass spectrometry. Zhong Xi Yi Jie He Xue Bao 9(9):1022–1030

    CAS  PubMed  Google Scholar 

  • Domingos AK, Saad EB, Wilhelm HM, Ramos LP (2008) Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology. Bioresour Technol 99(6):1837–1845

    CAS  PubMed  Google Scholar 

  • Ediage EN, Di Mavungu JD, Scippo ML, Schneider YJ, Larondelle Y, Callebaut A, Robbens J, Van Peteghem C, De Saeger S (2011) Screening, identification and quantification of glucosinolates in black radish (Raphanus sativus L. niger) based dietary supplements using liquid chromatography coupled with a photodiode array and liquid chromatography-mass spectrometry. J Chromatogr A 1218(28):4395–4405

    PubMed  Google Scholar 

  • Elivra B, Tatiana B (2012) Investigations of thioglycosides Raphanus sativus. Adv Res Sci Areas 3(7):1424–1425

    Google Scholar 

  • Entsch B, Letham DS (1979) Enzymic glucosylation of the cytokinin 6-aminobenzylaminopurine. Plant Sci Lett 14(2):205–212

    CAS  Google Scholar 

  • Fant F, Vranken W, Broekaert W, Borremans F (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol 279(1):257–270

    CAS  PubMed  Google Scholar 

  • Faye L, Berjonneau C (1979) Evidence for the glycoprotein nature of radish beta-fructosidase. Biochimie 61(1):51–59

    CAS  PubMed  Google Scholar 

  • Faye L, Mouatassim B, Ghorbel A (1986) Cell wall and cytoplasmic isozymes of radish beta-fructosidase have different n-linked oligosaccharides. Plant Physiol 80(1):27–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao RC, Jing P, Ruan SY, Zhang YF, Zhao SJ, Cai Z, Qian BJ (2014) Removal of off-flavours from radish (Raphanus sativus L.) anthocyanin-rich pigments using chitosan and its mechanism(s). Food Chem 146:423–428

    CAS  PubMed  Google Scholar 

  • Ghayur MN, Gilani AH (2005) Gastrointestinal stimulatory and uterotonic activities of dietary radish leaves extract are mediated through multiple pathways. Phytother Res 19(9):750–755

    PubMed  Google Scholar 

  • Ghayur MN, Gilani AH (2006) Radish seed extract mediates its cardiovascular inhibitory effects via muscarinic receptor activation. Fundam Clin Pharmacol 20(1):57–63

    CAS  PubMed  Google Scholar 

  • Ghayur MN, Gilani AH (2012) Contractile effect of radish and betel nut extracts on rabbit gallbladder. J Complement Integr Med 9, 3

    Google Scholar 

  • Ghayur MN, Gilani AH, Houghton PJ (2005) Species differences in the gut stimulatory effects of radish seeds. J Pharm Pharmacol 57(11):1493–1501

    CAS  PubMed  Google Scholar 

  • Gilani AH, Ghayur MN (2004) Pharmacological basis for the gut stimulatory activity of Raphanus sativus leaves. J Ethnopharmacol 95(2–3):169–172

    PubMed  Google Scholar 

  • Gräwe W, Bachhuber P, Mock HP, Strack D (1992) Purification and characterization of sinapoylglucose:malate sinapoyltransferase from Raphanus sativus L. Planta 187(2):236–241

    PubMed  Google Scholar 

  • Greer MA (1950) Nutrition and goiter. Physiol Rev 30:513–548

    CAS  PubMed  Google Scholar 

  • Greuter Q, Burdet (2001) Raphanus Linnaeus. In: Wu ZY, Raven PH (eds) Flora of China, vol 8, Brassicaceae through Saxifragaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Guisti MM, Ghanadan H, Wrolstad RE (1998) Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one- and two-dimensional nuclear magnetic resonance techniques. J Agric Food Chem 46(12):4858–4863

    Google Scholar 

  • Gutiérrez RMP, Perez RL (2004) Raphanus sativus (radish): their chemistry and biology. Sci World J 4:811–837

    Google Scholar 

  • Hanlon PR, Barnes DM (2011) Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. J Food Sci 76(1):C185–C192

    CAS  PubMed  Google Scholar 

  • Hanlon PR, Webber DM, Barnes DM (2007) Aqueous extract from Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line. J Agric Food Chem 55(16):6439–6446

    CAS  PubMed  Google Scholar 

  • Hanlon PR, Robbins MG, Hammon LD, Barnes DM (2009) Aqueous extract from the vegetative portion of Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzyme expression in HepG2 cells. J Funct Foods 1:356–365

    CAS  Google Scholar 

  • Hara M, Fujii Y, Sasada Y, Kuboi T (2000) cDNA cloning of radish (Raphanus sativus) myrosinase and tissue-specific expression in root. Plant Cell Physiol 41(10):1102–1109

    CAS  PubMed  Google Scholar 

  • Hara M, Ito F, Asai T, Kuboi T (2009) Variation in amylase activities in radish (Raphanus sativus) cultivars. Plant Foods Hum Nutr 64(3):188–192

    CAS  PubMed  Google Scholar 

  • Hara M, Torazawa D, Asai T, Takahashi I (2011) Variations in the soluble sugar and organic acid contents in radish (Raphanus sativus L.) cultivars. Int J Food Sci Technol 46(11):2387–2392

    CAS  Google Scholar 

  • Harnly JM, Doherty R, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, Gebhardt S (2006) Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 54(26):9966–9977

    CAS  PubMed  Google Scholar 

  • Hase T, Hasegawa K (1982) Raphanusol A, a new growth inhibitor from Sakurajima radish seedlings. Phytochemistry 21(5):1021–1022

    CAS  Google Scholar 

  • Hase T, Koreeda M, Hasegawa K (1983) A growth inhibitor, 2-thioxothiazolidine-4-carboxylic acid from Sakurajima radish seedlings. Phytochemistry 22(5):1275–1276

    CAS  Google Scholar 

  • Hasegawa K, Hase T (1981) Raphanusol B: a growth inhibitor of light-grown radish seedlings. Plant Cell Physiol 22(2):303–306

    CAS  Google Scholar 

  • Hasegawa K, Miyamoto K (1978) Light growth inhibition and growth inhibitors in Sakurajima radish seedlings. Plant Cell Physiol 19(6):1077–1083

    CAS  Google Scholar 

  • Hasegawa K, Miyamoto K (1980) Raphanusol A: a new growth inhibitor of light-grown radish seedlings. Plant Cell Physiol 21(2):363–366

    CAS  Google Scholar 

  • Hasegawa K, Shiihara S, Iwagawa T, Hase T (1982) Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth. Plant Physiol 70(2):626–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa K, Noguchi H, Iwagawa T, Hase T (1986) Phototropism in hypocotyls of radish i. isolation and identification of growth inhibitors, cis-and trans-raphanusanins and raphanusamide, involved in phototropism of radish hypocotyls. Plant Physiol 81(4):976–979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hata K, Tanaka M, Tsumuraya Y, Hashimoto Y (1992) α-L-Arabinofuranosidase from radish (Raphanus sativus L.) seeds. Plant Physiol 100(1):388–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347

    CAS  PubMed  Google Scholar 

  • Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and fruits commonly consumed in The Netherlands. J Agric Food Chem 40(12):2379–2383

    CAS  Google Scholar 

  • Huxley A, Griffiths M, Levy M (eds) (1997) The new royal horticultural society dictionary of gardening, volume 2 (D–K). The Stockton Press, New York

    Google Scholar 

  • Ishii G, Saijo R (1987) Effect of season, soil type, sulphate level, mulching and plant density on isothiocyanate content in radish root juice. J Jpn Soc Hort Sci 56(3):313–320

    CAS  Google Scholar 

  • Ishii G, Saijo R, Mizutani J (1989a) A quantitative determination of 4-methylthio-3-butenyl glucosinolate in daikon (Raphanus sativus L.) roots by gas liquid chromatography. J Jpn Soc Hort Sci 58(2):339–344

    CAS  Google Scholar 

  • Ishii G, Saijo R, Nagata M (1989b) The difference of glucosinolate content in different cultivar of daikon roots (Raphanus sativus L.). Nippon Shokuhin Kogyo Gakkaishi 36(9):739–742

    Google Scholar 

  • Ishijima J, Nagasaki N, Maeshima M, Miyano M (2007) RVCaB, a calcium-binding protein in radish vacuoles, is predominantly an unstructured protein with a polyproline type II helix. J Biochem 142(2):201–211

    CAS  PubMed  Google Scholar 

  • Ivanovics G, Horvath S (1947) Raphanin, an antibacterial principle of the radish (Raphanus sativus). Nature 160(4061):297–298

    CAS  PubMed  Google Scholar 

  • Jakmatakul R, Suttisri R, Tengamnuay P (2009) Evaluation of antityrosinase and antioxidant activities of Raphanus sativus root: comparison between freeze-dried juice and methanolic extract. Thai J Pharm Sci 33(1):22–30

    Google Scholar 

  • Janjua S, Shahid M, Fakhir-i-Abbas (2013) Phytochemical analysis and in vitro antibacterial activity of root peel extract of Raphanus sativus. L. var niger. Adv Med Plant Res 1(1):1–7

    Google Scholar 

  • Jing P, Zhao SJ, Ruan SY, Xie ZH, Dong Y, Yu LI (2012) Anthocyanin and glucosinolate occurrences in the roots of Chinese red radish (Raphanus sativus L.), and their stability to heat and pH. Food Chem 133(4):1569–1576

    CAS  Google Scholar 

  • Jwanny EW, El-Sayed ST, Rashad MM, Mahmoud AE, Abdallah NM (1995) Myrosinase from roots of Raphanus sativus. Phytochemistry 39(6):1301–1303

    CAS  Google Scholar 

  • Kamble S, Ahmed Z, Ramabhimaiaha S, Patil P (2013) Anti-inflammatory activity of Raphanus sativus L in acute and chronic experimental models in albino rats. Biomed Pharmacol J 6(2):315–320

    Google Scholar 

  • Karri V, Bharadwaja KP (2013) Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Funct Integr Genomics 13(4):435–443

    CAS  PubMed  Google Scholar 

  • Katsuzaki H, Miyahara Y, Ota M, Imai K, Komiya T (2004) Chemistry and antioxidative activity of hot water extract of Japanese radish (daikon). Biofactors 21(1–4):211–214

    CAS  PubMed  Google Scholar 

  • Khanal P, Karmacharya A, Sharma S, Nepal AK, Shrestha K (2014) Biotechnological production of inducible defense-related proteins in edible radish (Raphanus sativus) found in Nepal. J Clin Diagn Res 8(1):112–115

    PubMed Central  PubMed  Google Scholar 

  • Kikuchi Y, Saika H, Yuasa K, Nagahama M, Tsuji A (2008) Isolation and biochemical characterization of two forms of RD21 from cotyledons of daikon radish (Raphanus sativus). J Biochem 144(6):789–798

    CAS  PubMed  Google Scholar 

  • Kim SS, Lee DJ (2005) Purification and characterization of a cationic peroxidase Cs in Raphanus sativus. J Plant Physiol 162(6):609–617

    CAS  PubMed  Google Scholar 

  • Kim HJ, Chen F, Wang X, Choi JH (2006) Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J Agric Food Chem 54(19):7263–7269

    CAS  PubMed  Google Scholar 

  • Kim WK, Kim JH, Jeong DH, Chun YH, Kim SH, Cho KJ, Chang MJ (2011) Radish (Raphanus sativus L. leaf) ethanol extract inhibits protein and mRNA expression of ErbB(2) and ErbB(3) in MDA-MB-231 human breast cancer cells. Nutr Res Pract 5(4):288–293

    PubMed Central  PubMed  Google Scholar 

  • Kim KH, Moon EJ, Kim SY, Choi SU, Lee JH, Lee KR (2014) 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities. J Ethnopharmacol 151(1):503–508

    CAS  PubMed  Google Scholar 

  • Kjaer A, Madsen JO, Maeda Y, Ozawa Y, Uda Y (1978) Volatiles in distillates of fresh radish of Japanese and Kenyan origin. Agric Biol Chem 42(9):1715–1721

    CAS  Google Scholar 

  • Kotake T, Tsuchiya K, Aohara T, Konishi T, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2006) An alpha-L-arabinofuranosidase/beta-D-xylosidase from immature seeds of radish (Raphanus sativus L.). J Exp Bot 57(10):2353–2362

    CAS  PubMed  Google Scholar 

  • Lai XF, Cai FG, Wang WJ, Ma LQ, Zhong YX, Xu FC (2006) Purification and characterization of two chitin-binding proteins with lysozyme activity from roots of Raphanus sativus. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 32(4):445–450 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Laroche M, Aspart L, Delseny M, Penon P (1984) Characterization of radish (Raphanus sativus) storage proteins. Plant Physiol 74(3):487–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MY, Kim SS (1994) Characteristics of six isoperoxidases from Korean radish root. Phytochemistry 35(2):287–290

    CAS  PubMed  Google Scholar 

  • Lee SO, Lee IS (2006) Induction of quinone reductase, the phase 2 anticarcinogenic marker enzyme, in Hepa1c1c7 cells by radish sprouts, Raphanus sativus L. J Food Sci 71(2):S144–S148

    CAS  Google Scholar 

  • Lee SW, Yang KM, Kim JK, Nam BH, Lee CM, Jeong MH, Seo SY, Kim GY, Jo WS (2012) Effects of white radish (Raphanus sativus) enzyme extract on hepatotoxicity. Toxicol Res 28(3):165–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li YB, Jing S (2010) Determination of the total alkaloids in Semen Raphani by acid dye colorimetry. Inf Trad Chin Med 27:8–10 (In Chinese)

    Google Scholar 

  • Li TY, Li TG, Zhang GX, Guo HY, Liu J, Li BG, Piao ZY, Gai GG (2007) Experimental study of hypotensive effect of soluble Semen Raphani alkaloids in spontaneous hypertensive rats. World J Integr Trad West Med 2(1):25–28 (In Chinese)

    Google Scholar 

  • Li QY, Dai SJ, Chen SX, Yan XF (2008) Analysis of glucosinolate composition and content in radish. Acta Hort Sin 35(8):1205–1208 (In Chinese)

    CAS  Google Scholar 

  • Lichtenthaler HK, Becker K (1975) The influence of continuous far-red and white light on prenyl chain synthesis in plastids of Raphanus seedlings. Planta 122(3):255–258

    CAS  PubMed  Google Scholar 

  • Lin LZ, Sun J, Chen P, Harnly JA (2011) LC-PDA-ESI/MSn identification of new anthocyanins in purple Bordeaux radish (Raphanus sativus L. variety). J Agric Food Chem 59(12):6616–6627

    CAS  PubMed  Google Scholar 

  • Linscheid M, Wendisch D, Strack D (1980) The structure of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Z Naturforsch C 35:907–914

    Google Scholar 

  • Liu LF, Wang YX, Zhang XY, Liu XF (2002) Determination of sinapine in Semen Raphani. Chin Trad Patent Med 24:52–54 (In Chinese)

    Google Scholar 

  • Liu YH, Murakami N, Wang LS, Zhang S (2008) Preparative high-performance liquid chromatography for the purification of natural acylated anthocyanins from red radish (Raphanus sativus L.). J Chromatogr Sci 46(8):743–746

    CAS  PubMed  Google Scholar 

  • Liu J, Dong N, Wang Q, Li J, Qian G, Fan H, Zhao G (2014) Thermal degradation kinetics of anthocyanins from Chinese red radish (Raphanus sativus L.) in various juice beverages. Eur Food Res Technol 238(2):177–184

    CAS  Google Scholar 

  • Lugasi A, Hovari J (2000) Flavonoid aglycons in foods of plant origin I. Veg Acta Aliment 29:345–352

    CAS  Google Scholar 

  • Lugasi A, Blázovics A, Hagymási K, Kocsis I, Kéry A (2005) Antioxidant effect of squeezed juice from black radish (Raphanus sativus L. var niger) in alimentary hyperlipidaemia in rats. Phytother Res 19(7):587–591

    PubMed  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant-book: a portable dictionary of plants, their classification and uses, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Makhkamov GM, Latipov A (1965) Effect of natural goitrogenic compounds on hormone formation in thyroid glands of rats. Uzbeksk Biol Zh 9:10–13

    CAS  Google Scholar 

  • Marquardt P, Classen HG, Schumacher KA (1976) N-Methylphenethylamine, an indirect sympathicomimetic agent in vegetables. Arzneimittelforschung 26(11):2001–2003 (In German)

    CAS  PubMed  Google Scholar 

  • Martínez-Villaluenga C, Frías J, Gulewicz P, Gulewicz K, Vidal-Valverde C (2008) Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol 46(5):1635–1644

    PubMed  Google Scholar 

  • Matsufuji H, Kido H, Misawa H, Yaguchi J, Otsuki T, Chino M, Takeda M, Yamagata K (2007) Stability to light, heat, and hydrogen peroxide at different pH values and DPPH radical scavenging activity of acylated anthocyanins from red radish extract. J Agric Food Chem 55(9):3692–3701

    CAS  PubMed  Google Scholar 

  • Matsuoka H, Takahashi A, Yanagi K, Uda Y (1997) Antimicrobial action of 2-thioxo-3-pyrrolidinecarbaldehyde, a major thiolactam compound generated from the pungent principle of radish in an aqueous medium. Food Sci Technol Int (Tokyo) 3(4):353–356

    CAS  Google Scholar 

  • Mayer C (1981) Vegetarian medicines. Mayerbooks, Glenwood, p. 20

    Google Scholar 

  • Mezencev R, Kutschy P, Salayova A, Updegrove T, McDonald JF (2009) The design, synthesis and anticancer activity of new nitrogen mustard derivatives of natural indole phytoalexin 1-methoxyspirobrassinol. Neoplasma 56(4):321–330

    CAS  PubMed  Google Scholar 

  • Misawa H, Tsumuraya Y, Kaneko Y, Hashimoto Y (1996) [alpha]-L-fucosyltransferases from radish primary roots. Plant Physiol 110(2):665–673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell JC, Jordan WP (1974) Allergic contact dermatitis from the radish, Raphanus sativus. Br J Dermatol 91(2):183–189

    CAS  PubMed  Google Scholar 

  • Mock HP, Strack D (1993) Energetics of the uridine 5′-diphosphoglucose: hydroxycinnamic acid acyl-glucosyltransferase reaction. Phytochemistry 32(3):575–579

    CAS  Google Scholar 

  • Mohammed NHSH, Abelgasim AI, Mohammed AH (2008) Protective effect of Raphanus sativus against carbon tetrachloride induced hepatotoxicity in wistar albino rats. J Pharmacol Toxicol 3(4):272–278

    Google Scholar 

  • Montaut S, Barillari J, Iori R, Rollin P (2010) Glucoraphasatin: chemistry, occurrence, and biological properties. Phytochemistry 71(1):6–12

    CAS  PubMed  Google Scholar 

  • Moreland DE, Hussey GG, Shriner CR, Farmer FS (1974) Adenosine phosphates in germinating radish (Raphanus sativus L.) seeds. Plant Physiol 54(4):560–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muminova BA, Batirov EK, Yuldashev MP, Inamova ZG (2006) Kaempferol glycosides from Allium cepa and Raphanus sativus. Chem Nat Comp 42(1):110–111

    CAS  Google Scholar 

  • Naghibi F, Pourmorad F, Honary S, Shamsi M (2003) Decontamination of water polluted with phenol using Raphanus sativus root. Iranian J Pharm Res 2(1):29–32

    CAS  Google Scholar 

  • Nakamura Y, Iwahashi T, Tanaka A, Koutani J, Matsuo T, Okamoto S, Sato K, Ohtsuki K (2001) 4-(Methylthio)-3-butenyl isothiocyanate, a principal antimutagen in daikon (Raphanus sativus; Japanese white radish). J Agric Food Chem 49(12):5755–5760

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Nakamura K, Asai Y, Wada T, Tanaka K, Matsuo T, Okamoto S, Meijer J, Kitamura Y, Nishikawa A, Park EY, Sato K, Ohtsuki K (2008) Comparison of the glucosinolate-myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J Agric Food Chem 56(8):2702–2707

    CAS  PubMed  Google Scholar 

  • Nakano Y, Okawa S, Yamauchi T, Koizumi Y, Sekiya J (2006) Purification and properties of soluble and bound gamma-glutamyltransferases from radish cotyledon. Biosci Biotechnol Biochem 70(2):369–376

    CAS  PubMed  Google Scholar 

  • Nakayama M, Yamane H, Yokota T, Yamaguchi I, Murofushi N, Takahashi N, Nishijima T, Katsura N, Nonaka M, Gaskin P, MacMillan J, Mander LN, Chu A (1990) Endogenous gibberellins in mature seed of Raphanus sativus L. cv. Taibyo-sobutori. Agric Biol Chem 54(3):837–840

    CAS  Google Scholar 

  • Nakayama M, Yamane H, Nojiri H, Yokota T, Yamaguchi I, Murofushi N, Takahashi N, Nishijima T, Koshioka M, Katsura N, Nonaka M (1995) Qualitative and quantitative analysis of endogenous gibberellins in Raphanus sativus L. during cold treatment and the subsequent growth. Biosci Biotechnol Biochem 59(6):1121–1125

    CAS  Google Scholar 

  • Nielsen JK, Olsen O, Pedersen LH, Sørensen H (1984) 2-O-(p-Coumaroyl)-l-malate, 2-O-caffeoyl-l-malate and 2-O-feruloyl-l-malate in Raphanus sativus. Phytochemistry 23(8):1741–1743

    CAS  Google Scholar 

  • Nishijima T, Koshioka M, Yamazaki H, Miura H, Mander LN (1995) Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort (ISHS) 394:199–206

    CAS  Google Scholar 

  • N’jai AU, Kemp MQ, Metzger BT, Hanlon PR, Robbins M, Czuyprynski C, Barnes DM (2012) Spanish black radish (Raphanus sativus L. var. niger) diet enhances clearance of DMBA and diminishes toxic effects on bone marrow progenitor cells. Nutr Cancer 64(7):1038–1048

    PubMed  Google Scholar 

  • Nunes DL, Franca AS, Oliveira LS (2011) Use of Raphanus sativus L. press cake, a solid residue from biodiesel processing, in the production of adsorbents by microwave activation. Environ Technol 32(9–10):1073–1083

    CAS  PubMed  Google Scholar 

  • Nurmann G, Strack D (1979) Sinapine esterase. 1. Characterization of sinapine esterase from cotyledons of Raphanus sativus. Z Naturforsch C 34:715–720

    Google Scholar 

  • Obata S, Nishimura M, Nagai K, Sakihama N, Shin M (1995) Four ferredoxins from Japanese radish leaves. Arch Biochem Biophys 316(2):797–802

    CAS  PubMed  Google Scholar 

  • Ochse JJ, Bakhuizen van den Brink RC (1980) Vegetables of the Dutch Indies, 3rd edn. Ascher & Co., Amsterdam, 1016 pp

    Google Scholar 

  • Okano K, Asano J, Ishii G (1990) Contents of pungent principle in roots of Japanese radish (Raphanus sativus L.) cultivars. J Jpn Soc Hort Sci 59(3):551–558

    CAS  Google Scholar 

  • Orlovskaya T, Sedin A, Malikova M (2013) Carbohydrates from seeds of Raphanus sativus and Brassica napus. Chem Nat Comp 49(2):327–328

    CAS  Google Scholar 

  • Otsuki T, Matsufuji H, Takeda M, Toyoda M, Goda Y (2002) Acylated anthocyanins from red radish (Raphanus sativus L.). Phytochemistry 60(1):79–87

    CAS  PubMed  Google Scholar 

  • Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J Agric Food Chem 56(3):875–883

    CAS  PubMed  Google Scholar 

  • Park NI, Xu H, Li X, Jang IH, Park S, Ahn GH, Lim YP, Kim SJ, Park SU (2011) Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). J Agric Food Chem 59(11):6034–6039

    CAS  PubMed  Google Scholar 

  • Pedrero Z, Madrid Y, Cámara C (2006) Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem 54(6):2412–2417

    CAS  PubMed  Google Scholar 

  • Phelan JR, Allen A, Vaughan JG (1984) Myrosinase in Raphanus sativus L. J Exp Bot 35(10):1558–1564

    CAS  Google Scholar 

  • Piluek K, Beltran MM (1994) Raphanus sativus L. In: Siemonsma JS, Piluek K (eds) Plant resources of south-east Asia, vol 8, Vegetables. Prosea Foundation, Bogor, pp 233–237

    Google Scholar 

  • Prahoveanu E, Eşanu V (1987) Immunomodulation with natural products. I. Effect of an aqueous extract of Raphanus sativus niger on experimental influenza infection in mice. Virologie 38(2):115–120 (In French)

    CAS  PubMed  Google Scholar 

  • Prahoveanu E, Eşanu V (1990) The effects of aqueous extracts of Raphanus niger on an experimental influenza infection in mice and on the enzyme polymorphism in lung tissue extracts. Rev Roum Virol 41(2):113–117 (In French)

    CAS  PubMed  Google Scholar 

  • Rakhimov MM, Akhmedzhanov P, Babaev MU, Kkhole B, Mad’iarov SP (1981) Properties of phospholipase D from Raphanus sativus. Biokhimiia 46(2):240–249 (In Russian)

    CAS  PubMed  Google Scholar 

  • Roh SS, Park SB, Park SM, Choi BW, Lee MH, Hwang YL, Kim CH, Jeong HA, Kim CD, Lee JH (2013) A novel compound rasatiol isolated from Raphanus sativus has a potential to enhance extracellular matrix synthesis in dermal fibroblasts. Ann Dermatol 25(3):315–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 51(3):571–581

    CAS  PubMed  Google Scholar 

  • Sakoda M, Hase T, Hasegawa K (1990) A growth inhibitor, 3-(E)-(methylthio) methylene-2-pyrrolidinethione from light-grown radish seedlings. Phytochemistry 29(4):1031–1032

    CAS  Google Scholar 

  • Sakoda M, Hasegawa K, Ishizuka K (1991) The occurrence in plants of the growth inhibitors, the raphanusanins. Phytochemistry 30(1):57–61

    CAS  Google Scholar 

  • Salah-Abbès JB, Abbès S, Houas Z, Abdel-Wahhab MA, Oueslati R (2008a) Zearalenone induces immunotoxicity in mice: possible protective effects of radish extract (Raphanus sativus). J Pharm Pharmacol 60(6):761–770

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Ouanes Z, Houas Z, Abdel-Wahhab MA, Bacha H, Oueslati R (2008b) Tunisian radish extract (Raphanus sativus) enhances the antioxidant status and protects against oxidative stress induced by zearalenone in Balb/c mice. J Appl Toxicol 28(1):6–14

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Abdel-Wahhab MA, Oueslati R (2009a) Raphanus sativus extract protects against Zearalenone induced reproductive toxicity, oxidative stress and mutagenic alterations in male Balb/c mice. Toxicon 53(5):525–533

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Haous Z, Oueslati R (2009b) Raphanus sativus extract prevents and ameliorates zearalenone-induced peroxidative hepatic damage in Balb/c mice. J Pharm Pharmacol 61(11):1545–1554

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Ouanes Z, Abdel-Wahhab MA, Bacha H, Oueslati R (2009c) Isothiocyanate from the Tunisian radish (Raphanus sativus) prevents genotoxicity of Zearalenone in vivo and in vitro. Mutat Res 677(1–2):59–65

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Abdel-Wahhab M, Oueslati R (2010a) Immunotoxicity of zearalenone in Balb/c mice in a high subchronic dosing study counteracted by Raphanus sativus extract. Immunopharmacol Immunotoxicol 32(4):628–636

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Abdel-Wahhab MA, Oueslati R (2010b) In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharm Pharmacol 62(2):231–239

    PubMed  Google Scholar 

  • Salah-Abbès JB, Abbès S, Zohra H, Oueslati R (2014) Tunisian radish (Raphanus sativus) extract prevents cadmium-induced immunotoxic and biochemical alterations in rats. J Immunotoxicol (in press)

    Google Scholar 

  • Sang JP, Minchinton IR, Johnstone PK, Truscott RJW (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and Swede. Can J Plant Sci 64:77–93

    CAS  Google Scholar 

  • San Juan MEC, Jumala RS, Niasca KHG (2012) Phytochemical screening, isolation and structure elucidation of the radish (Raphanus sativus Linn.) bulb ethanolic extract using gas chromatography mass spectrometry (GC-MS). Univ Immaculate Conception Res J 18(1):237–247

    Google Scholar 

  • Schmidtlein H, Herrmann K (1975) On phenolic acids of vegetables. I. Hydroxycinnamic acids and hydroxybenzoic acids of Brassica-species and leaves of other Cruciferae. Z Lebensm Unters Forsch 159(3):139–148 (In German)

    CAS  PubMed  Google Scholar 

  • Scholl C, Eshelman BD, Barnes DM, Hanlon PR (2011) Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. J Food Sci 76(3):C504–C511

    CAS  PubMed  Google Scholar 

  • Sekimata M, Ogura K, Tsumuraya Y, Hashimoto Y, Yamamoto S (1989) A beta-galactosidase from radish (Raphanus sativus L.) seeds. Plant Physiol 90(2):567–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118(1):21–28

    CAS  PubMed  Google Scholar 

  • Sham TT, Yuen ACY, Ng YF, Chan CO, Mok DKW, Chan SW (2013) A review of the phytochemistry and pharmacological activities of Raphani Semen. Evid Based Complement Alternat Med 2013: Article ID 636194

    Google Scholar 

  • Sharma V, Strack D (1985) Vacuolar localization of 1-sinapolglucose: L-malate sinapoyltransferase in protoplasts from cotyledons of Raphanus sativus. Planta 163(4):563–568

    CAS  PubMed  Google Scholar 

  • Shikita M, Fahey JW, Golden TR, Holtzclaw WD, Talalay P (1999) An unusual case of ‘uncompetitive activation’ by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem J 341:725–732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla S, Chatterji S, Mehta S, Rai PK, Singh RK, Yadav DK, Watal G (2011a) Antidiabetic effect of Raphanus sativus root juice. Pharm Biol 49(1):32–37

    PubMed  Google Scholar 

  • Shukla S, Chatterji S, Yadav DK, Watal G (2011b) Antimicrobial efficacy of Raphanus sativus root juice. Int J Pharm Pharm Sci 3:89–92

    Google Scholar 

  • Sipos P, Hagymasi K, Lugasi A, Feher E, Blazovics A (2002) Effects of black radish root (Raphanus sativus L. var. niger) on the colon mucosa in rats fed a fat rich diet. Phytother Res 16(7):677–679

    CAS  PubMed  Google Scholar 

  • Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs): 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79(4):497–506

    CAS  PubMed  Google Scholar 

  • Stöhr H, Herrmann K (1975) On the phenolic acids of vegetables. III. Hydroxycinnamic acids and hydroxybenzoic acids of root vegetables. Z Lebensm Unters Forsch 159(4):218–224 (In German)

    PubMed  Google Scholar 

  • Strack D (1977) Sinapic acid ester fluctuations in cotyledons of Raphanus sativus. Z Pflanzenphysiol 84(2):139–145

    CAS  Google Scholar 

  • Strack D (1981) Sinapine as a supply of choline for the biosynthesis of phosphatidylcholine in Raphanus sativus var sativus cultivar saxa seedlings. Z Naturforsch C 4:215–221

    Google Scholar 

  • Strack D (1982) Development of 1-O-sinapoyl-β-d-glucose: l-malate sinapoyltransferase activity in cotyledons of red radish (Raphanus sativus L. var. sativus). Planta 155:31–36

    CAS  PubMed  Google Scholar 

  • Strack D, Sharma V (1985) Vacuolar localization of the enzymatic synthesis of hydroxycinnamic acid esters of malic acid in protoplasts from Raphanus sativus leaves. Physiol Plant 65:45–50

    CAS  Google Scholar 

  • Strack D, Tkotz N, Klug M (1978) Phenylpropanoid metabolism in cotyledons of Raphanus sativus and the effect of competitive in vivo inhibition of l-phenylalanine ammonia-lyase (PAL) by hydroxylamine derivatives. Z Pflanzenphysiol 89:343–353

    CAS  Google Scholar 

  • Strack D, Pieroth M, Scharf H, Sharma V (1985) Tissue distribution of phenylpropanoid metabolism in cotyledons of Raphanus sativus L. Planta 164(4):507–511

    CAS  PubMed  Google Scholar 

  • Strack D, Reinecke J, Takeuchi S (1986) Evidence for a relationship between malate metabolism and activity of 1-sinapoylglucose: L-malate sinapoyltransferase in radish (Raphanus sativus L.) cotyledons. Planta 167(2):212–217

    CAS  PubMed  Google Scholar 

  • Streeter JG, Thompson JF (1972) Anaerobic accumulation of gamma-aminobutyric acid and alanine in radish leaves (Raphanus sativus, L.). Plant Physiol 49(4):572–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stuart GU (2013) Philippine alternative medicine. Manual of some Philippine medicinal plants. http://www.stuartxchange.org/OtherHerbals.html

  • Suge H, Rappaport L (1968) Role of gibberellins in stem elongation and flowering in radish. Plant Physiol 43(8):1208–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suh SJ, Moon SK, Kim CH (2006) Raphanus sativus and its isothiocyanates inhibit vascular smooth muscle cells proliferation and induce G(1) cell cycle arrest. Int Immunopharmacol 6(5):854–861

    CAS  PubMed  Google Scholar 

  • Takaya Y, Kondo Y, Furukawa T, Niwa M (2003) Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. J Agric Food Chem 51(27):8061–8066

    CAS  PubMed  Google Scholar 

  • Tamura G, Iwasawa T, Masada M, Fukushima K (1976) Some properties of cysteine synthase from radish roots. Agric Biol Chem 40(3):637–638

    CAS  Google Scholar 

  • Tamura S, Tsuji K, Yongzhen P, Ohnishi-Kameyama M, Murakami N (2010) Six new acylated anthocyanins from red radish (Raphanus sativus). Chem Pharm Bull (Tokyo) 58(9):1259–1262

    CAS  Google Scholar 

  • Tan P, Jiang HY, Lu WH (2005) A research review of Raphani Semen. J Pract Trad Chin Med 21:254–255

    Google Scholar 

  • Taniguchi H, Kobayashi-Hattori K, Tenmyo C, Kamei T, Uda Y, Sugita-Konishi Y, Oishi Y, Takita T (2006) Effect of Japanese radish (Raphanus sativus) sprout (Kaiware-daikon) on carbohydrate and lipid metabolisms in normal and streptozotocin-induced diabetic rats. Phytother Res 20(4):274–278

    CAS  PubMed  Google Scholar 

  • Taniguchi H, Muroi R, Kobayashi-Hattori K, Uda Y, Oishi Y, Takita T (2007) Differing effects of water-soluble and fat-soluble extracts from Japanese radish (Raphanus sativus) sprouts on carbohydrate and lipid metabolism in normal and streptozotocin-induced diabetic rats. J Nutr Sci Vitaminol (Tokyo) 53(3):261–266

    CAS  Google Scholar 

  • Tatsuzawa F, Toki K, Saito N, Shinoda K, Shigihara A, Honda T (2008) Anthocyanin occurrence in the root peels, petioles and flowers of red radish (Raphanus sativus L.). Dyes Pigments 79(1):83–88

    CAS  Google Scholar 

  • Tatsuzawa F, Saito N, Toki K, Shinoda K, Shigihara A, Honda T (2010) Acylated cyanidin 3-sophoroside-5-glucosides from the purple roots of red radish (Raphanus sativus L.)‘Benikanmi’. J Jpn Soc Hort Sci 79(1):103–107

    CAS  Google Scholar 

  • Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF (1992a) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100(2):1055–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992b) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267(22):15301–15309

    CAS  PubMed  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7(5):573–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • The Plant List (2014) Raphanus raphanistrum subsp. sativus. http://www.theplantlist.org/

  • Tkotz N, Strack D (1980) Enzymatic synthesis of sinapoyl-L-malate from 1-sinapoylglucose and L-malate by a protein preparation from Raphanus sativus cotyledons. Z Naturforsch C 10:835–837

    Google Scholar 

  • Tomè F, Campedelli L, Bellini E (1975) Distribution of phenylalanine transaminase and phenylalanine ammonia-lyase activities in etiolated and light irradiated radish seedlings (Raphanus sativus L.). Experientia 31(10):1119–1121

    PubMed  Google Scholar 

  • Tsuji A, Kikuchi Y, Ogawa K, Saika H, Yuasa K, Nagahama M (2008) Purification and characterization of cathepsin B-like cysteine protease from cotyledons of daikon radish, Raphanus sativus. FEBS J 275(21):5429–5443

    CAS  PubMed  Google Scholar 

  • Tsumuraya Y, Hashimoto Y, Yamamoto S, Shibuya N (1984) Structure of L-arabino-D-galactan-containing glycoproteins from radish leaves. Carbohydr Res 134(2):215–228

    CAS  Google Scholar 

  • Tsumuraya Y, Hashimoto Y, Yamamoto S (1987) An L-arabino-D-galactan and an L-arabino-D-galactan-containing proteoglycan from radish (Raphanus sativus) seeds. Carbohydr Res 161(1):113–126

    CAS  Google Scholar 

  • Tsumuraya Y, Ogura K, Hashimoto Y, Mukoyama H, Yamamoto S (1988) Arabinogalactan-proteins from primary and mature roots of radish (Raphanus sativus L.). Plant Physiol 86(1):155–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uda Y, Matsuoka H, Kumagami H, Shima H, Maeda Y (1993a) Stability and antimicrobial property of 4-methylthio-3-butenyl isothiocyanate, the pungent principle in radish. Nippon Shokuhin Kogyo Gakkaishi 40(10):743–746

    CAS  Google Scholar 

  • Uda Y, Matsuoka H, Shima H, Kumagami H, Maeda Y (1993b) Antimicrobial activity of water-soluble products derived from radish mustard oil and identification of an active component therein. Nippon Shokuhin Kogyo Gakkaishi 40(11):801–806

    CAS  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA, ARS) (2013) USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl

  • Vardhini BV, Sujatha E, Rao SSM (2012) Influence of brassinosteroids on metabolites of Raphanus sativus L. J Phytol 4(2):45–47

    Google Scholar 

  • Vargas R, Perez RM, Perez S, Zavala MA, Perez C (1999) Antiurolithiatic activity of Raphanus sativus aqueous extract on rats. J Ethnopharmacol 68(61–3):335–338

    CAS  PubMed  Google Scholar 

  • Visentin M, Tava A, Iori R, Palmieri S (1992) Isolation and identification of trans-4-(methylthio)-3-butenyl glucosinolate from radish roots (Raphanus sativus L.). J Agric Food Chem 40(9):1687–1691

    CAS  Google Scholar 

  • Wada K, Onda M, Matsubara H (1989) Amino acid sequences of ferredoxin isoproteins from radish roots. J Biochem 105(4):619–625

    CAS  PubMed  Google Scholar 

  • Wang LS, Sun XD, Cao Y, Wang L, Li FJ, Wang YF (2010) Antioxidant and pro-oxidant properties of acylated pelargonidin derivatives extracted from red radish (Raphanus sativus var. niger, Brassicaceae). Food Chem Toxicol 48(10):2712–2718

    CAS  PubMed  Google Scholar 

  • Wu XL, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54(11):4069–4075

    CAS  PubMed  Google Scholar 

  • Wu SB, Wang F, Jin XB, Liu T, Wu LR, Wang W, Mei D, Zheng Z, Zhu JY (2014) Two new natural products from the roots of Raphanus sativus L. Adv Mat Res 884–885:548 (In Chinese)

    Google Scholar 

  • Yamasaki M, Omi Y, Fujii N, Ozaki A, Nakama A, Sakakibara Y, Suiko M, Nishiyama K (2009) Mustard oil in “Shibori Daikon” a variety of Japanese radish, selectively inhibits the proliferation of H-ras-transformed 3Y1 cells. Biosci Biotechnol Biochem 73(10):2217–2221

    CAS  PubMed  Google Scholar 

  • Yang YW, Tai PY, Chen Y (2000) The origin of Raphanus sativus based on the DNA sequences from different organelles. HortScience 35(3):397

    Google Scholar 

  • Yang F, Lian GY, Yu B (2010) Synthesis of raphanuside, an unusual oxathiane-fused thioglucoside isolated from the seeds of Raphanus sativus L. Carbohydr Res 345(2):309–314

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Takada N, Koda Y (2010) Isolation and identification of an anti-bolting compound, hexadecatrienoic acid monoglyceride, responsible for inhibition of bolting and maintenance of the leaf rosette in radish plants. Plant Cell Physiol 51(8):1341–1349

    CAS  PubMed  Google Scholar 

  • Zhang MF, Shen YQ (1996) Antidiarrheal and antiinflammatory effects of sinapine. Pharmcol Clin Chin Materia Medica 12(1):29–31

    CAS  Google Scholar 

  • Zhang YH, Yang ZH, Cao ZX (1983) Studies on stigma pellicle glycoproteins of Raphanus sativus L. Acta Bot Sinica 25(6):544–550

    CAS  Google Scholar 

  • Zhang X, Liu HB, Jia JJ, Lv WH (2010) Two novel sulfur compounds from the seeds of Raphanus sativus L. J Asian Nat Prod Res 12(2):113–118

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2015). Raphanus raphanistrum subsp. sativus . In: Edible Medicinal and Non Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9511-1_31

Download citation

Publish with us

Policies and ethics