Skip to main content

Integrated Assessment of Impacts of Atmospheric Deposition and Climate Change on Forest Ecosystem Services in Europe

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Abstract

Important forest ecosystem services are pollutant filtering relevant for an adequate water quality (regulating service), wood production (provisioning service) with related carbon (C) storage (regulating service) and the provision of a habitat for a diversity of plants and animals (supporting service). Nitrogen (N) and sulphur (S) deposition affect these ecosystem services. In this chapter, we describe the application of the soil model VSD, in combination with the forest growth model EUgrow and the plant species occurrence model PROPS to quantify the impact of N and S deposition on: (i) changes in soil buffering, in terms of accumulation or depletion of the pools of N, base cations (BC) and aluminium (Al), and changes in nitrate (NO3) and Al concentration in soil water, (ii) forest growth and carbon sequestration, and (iii) plant species diversity. Results showed that the depletion of Al and BC pools and the soil water concentrations of NO3 and Al increased strongly between 1950 and 1980, followed by a decrease between 1980 and 2010, reflecting the strong initial increase and subsequent decrease in N and S deposition in both periods, respectively. The impact of future emission reductions on the various parameters in the period 2010–2050 was larger than the climate change impact. Unlike soil and water quality, both N deposition and climate change had on average a positive impact on carbon sequestration. N deposition was calculated to be the dominant driver of changes in forest growth in the past (period 1900–2000) and climate change for the future (period 2000–2050). Plant species diversity changed hardly in scenarios assuming constant climate and low N deposition reduction, significantly at constant climate and strongly decreasing N deposition, and sharply when both climate and N deposition changed, especially in areas with a pronounced temperature change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

    Article  Google Scholar 

  • Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntsen, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. Bioscience, 48, 921–934.

    Article  Google Scholar 

  • Amann, M., Asman, W., Bertok, I., Cofala, J., Heyes, C., Klimont, Z., Schöpp, W., & Wagner, F. (2007). Cost-effective emission reductions to meet the environmental targets of the thematic strategy on air pollution under greenhouse gas constraints. (NEC Scenario Analysis Report Nr. 5). Laxenburg: International Institute for Applied Systems Analysis (IIASA).

    Google Scholar 

  • Berg, B., & Matzner, E. (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5, 1–25.

    Article  CAS  Google Scholar 

  • Bobbink, R., & Hettelingh, J.-P. (2011). Review and revision of empirical critical loads and dose-response relationships: Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. (Report 680359002/2011). Bilthoven: Coordination Centre for Effects, National Institute for Public Health and the Environment.

    Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    Article  CAS  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32, 831–849.

    Article  CAS  Google Scholar 

  • Carter, T. R. (2007). General guidelines on the use of scenario data for climate impact and adaption assessment. Version 2. Task Group on Data and Scenario Support for Impact and Climate Assessment (TGICA), Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R. S., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26, 152–158.

    Article  Google Scholar 

  • De Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41, 393–408.

    Article  Google Scholar 

  • De Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7, 260–272.

    Article  Google Scholar 

  • De Vries, W. (2014). Nutrients trigger carbon storage. Nature Climate Change, 4, 425–426.

    Article  Google Scholar 

  • De Vries, W., & Posch, M. (2011). Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050. Environmental Pollution, 159, 2289–2299.

    Article  CAS  Google Scholar 

  • De Vries, W., Reinds, G. J., Posch, M., & Kämäri, J. (1994). Simulation of soil response to acidic deposition scenarios in Europe. Water Air & Soil Pollution, 78, 215–246.

    Article  CAS  Google Scholar 

  • De Vries, W., Kros, J., Reinds, G. J., Wamelink, G. W. W., Mol, J., van Dobben, H., Bobbink, R., Emmett, B., Smart, S., Evans, C., Schlutow, A., Kraft, P., Belyazid, S., Sverdrup, H. U., van Hinsberg, A., Posch, M., & Hettelingh, J.-P. (2007). Developments in deriving critical limits and modelling critical loads of nitrogen for terrestrial ecosystems in Europe. (Report 1382). Wageningen: Alterra Wageningen UR.

    Google Scholar 

  • De Vries, W., Wamelink, G. W. W., van Dobben, H., Kros, J., Reinds, G. J., Mol-Dijkstra, J. P., Smart, S. M., Evans, C. D., Rowe, E. C., Belyazid, S., Sverdrup, H. U., van Hinsberg, A., Posch, M., Hettelingh, J.-P., Spranger, T., & Bobbink, R. (2010). Use of dynamic soil–vegetation models to assess impacts of nitrogen deposition on plant species composition: An overview. Ecological Applications, 20, 60–79.

    Article  CAS  Google Scholar 

  • De Vries, W., Du, E., & Butterbach-Bahl, K. (2014a). Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Current Opinion in Environmental Sustainability, 9–10: 90–104.

    Google Scholar 

  • De Vries, W., Goodale, C., Erisman, J. W., & Hettelingh, J.-P. (2014b). Impacts of nitrogen deposition on ecosystem services in interaction with other nutrients, air pollutants and climate change. In M. A. Sutton, K. E. Mason, L. J. Sheppard, H. Sverdrup, R. Haeuber, & W. K. Hicks (Eds.), Nitrogen deposition, Critical loads and Biodiversity (pp. 387–396). Springer. (Chap. 41).

    Google Scholar 

  • EC. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Brussel: European Commision.

    Google Scholar 

  • Ellenberg, H., Jr. (1985). Veränderungen der Flora Mitteleuropas unter dem Einfluss von Düngung und Immissionen. Schweizerische Zeitschrift fur Forstwesn, 136, 19–39.

    Google Scholar 

  • Erisman, J. W., & De Vries, W. (2000). Nitrogen deposition and effects on European forests. Environmental Reviews, 8, 65–93.

    Article  CAS  Google Scholar 

  • Fernández-Martínez, M., Vicca, S., Janssens, I., Sardans, J., Luyssaert, S., Campioli, M., Chapin, F. S., III, Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L., Reichstein, M., Rodà, F., & Peñuelas, J. (2014). Nutrient availability as the key regulator of global forest carbon balance. Nature Climate, Change, 4, 471–476.

    Article  Google Scholar 

  • Gundersen, P. (1991). Nitrogen deposition and the forest nitrogen cycle: Role of denitrification. Forest Ecology and Management, 44, 15–28.

    Article  Google Scholar 

  • Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environmental Reviews, 14, 1–57.

    Article  CAS  Google Scholar 

  • Helliwell, D. R. (1969). Valuation of wildlife resources. Regional Studies, 3, 41–47.

    Article  Google Scholar 

  • Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J.-A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E.-D., Tang, J., & Law, B. E. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315–322.

    Article  CAS  Google Scholar 

  • Laane, R. W. P. M. (2005). Applying the critical load concept to the nitrogen load of the river Rhine to the Dutch coastal zone. Estuarine, Coastal and Shelf Science, 62, 487–493.

    Article  CAS  Google Scholar 

  • LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371–379.

    Article  Google Scholar 

  • Liu, C., Kroeze, C., Hoekstra, A. Y., & Gerbens-Leenes, W. (2011). Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators, 18, 42–49.

    Article  Google Scholar 

  • Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., & Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture Ecosystems & Environment, 140, 234–244.

    Article  CAS  Google Scholar 

  • Magill, A. H., Aber, J. D., Currie, W., Nadelhoffer, K., Martin, M., McDowell, W. H., Melillo, J. M., & Steudler, P. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7–28.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. (A Report of the Millennium Ecosystem Assessment). Washington, DC: Island Press. <http://www.millenniumassessment.org/documents/document.356.aspx.pdf>.

    Google Scholar 

  • Mitchell, T., Carter, T. R., Jones, P. D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). (Working Paper 55). Tyndall Centre.

    Google Scholar 

  • Nakícenovíc, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Emilio la Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M. E., Shukla, P. R., Smith, S., Swart, R. J., van Rooyen, S., Victor, N., & Dadi, Z. (2001). Special report on emission scenarios: Intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Posch, M., & Reinds, G. J. (2009). A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling & Software, 24, 329–340.

    Article  Google Scholar 

  • Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & Somerville, R. C. J. (2007). Recent climate observations compared to projections. Science, 316, 709.

    Article  CAS  Google Scholar 

  • Reinds, G. J., Posch, M., & Leemans, R. (2009). Modelling recovery from soil acidification in European forests under climate change. Science of the Total Environment, 407, 5663–5673.

    Article  CAS  Google Scholar 

  • Reinds, G. J., Bonten, L., Mol-Dijkstra, J. P., Wamelink, G. W. W., & Goedhart, P. (2012). Combined effects of air pollution and climate change on species diversity in Europe: First assessments with VSD+ linked to vegetation models. In M. Posch & J.-P. Hettelingh (Eds.), CCE status report 2012 (pp. 49–61). Coordination Centre for Effects.

    Google Scholar 

  • Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.

    Article  Google Scholar 

  • Simpson, D., Fagerli, H., Jonson, J., Tsyro, S., Wind, P., & Tuovinen, J.-P. (2003). The EMEP unified Eulerian model. Model description. (EMEP MSC-W Report 1/2003). Oslo: The Norwegian Meteorological Institute.

    Google Scholar 

  • Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., Fernandez, P. G., Hildingsson, A., & De Vries, W. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management, 258, 1735–1750.

    Article  Google Scholar 

  • Strengers, B., Leemans, R., Eickhout, B., De Vries, B., & Bouwman, A. (2005). The land-use projections and resulting emissions in the IPCC SRES scenarios scenarios as simulated by the IMAGE 2.2 model. GeoJournal, 61, 381–393.

    Article  Google Scholar 

  • Tarrasón, L., Fagerli, H., Jonson, J. E., Simpson, D., Benedictow, A., Klein, H., Vestreng, V., Aas, W., & Hjellbrekke, A. G. (2007). Transboundary acidification, eutrophication and ground level ozone in Europe in 2005. (EMEP Report 1/2007). Oslo: Norwegian Meteorological Institute.

    Google Scholar 

  • TEEB. (2010). The economics of ecosystems and biodiversity: Mainstreaming the economics of nature: A synthesis of the approach, conclusions and recommendations of TEEB.

    Google Scholar 

  • Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.

    Article  Google Scholar 

  • Townsend, A. R., Braswell, B. H., Holland, E. A., & Penner, J. E. (1996). Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6, 806–814.

    Article  Google Scholar 

  • Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochem, 13, 87–115.

    Article  Google Scholar 

  • Wamelink, G. W. W., van Dobben, H. F., Mol-Dijkstra, J. P., Schouwenberg, E. P. A. G., Kros, J., De Vries, W., & Berendse, F. (2009). Effect of nitrogen deposition reduction on biodiversity and carbon sequestration. Forest Ecology and Management, 258, 1774–1779.

    Article  Google Scholar 

  • Zaehle, S., Ciais, P., Friend, A. D., & Prieur, V. (2011). Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geoscience, 4, 601–605.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this chapter has been funded by the European Commission under the project “Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems” (Grant agreement no: 282910). This research is also part of the strategic research program “Sustainable spatial development of ecosystems, landscapes, seas and regions” funded by the Dutch Ministry of Economic Affairs and carried out by Wageningen University and Research Centre (project code KB-14-001-036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Vries, W. et al. (2015). Integrated Assessment of Impacts of Atmospheric Deposition and Climate Change on Forest Ecosystem Services in Europe. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_24

Download citation

Publish with us

Policies and ethics