Skip to main content

Representation of Functions in Basis Sets

  • Chapter
  • First Online:
Spectral Methods in Chemistry and Physics

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 2951 Accesses

Abstract

The orthogonal basis sets most often used in spectral methods are the Chebyshev and Legendre polynomials on a bounded domain, or a Fourier basis set for periodic functions. We discuss in this chapter the expansions of Gaussian and Kappa distributions of kinetic theory in Hermite and Laguerre polynomials on the infinite and semi-infinite intervals, respectively. The spectral convergence properties of these expansions is demonstrated numerically and analytically. The expansions of \(\sin (x)\) in Hermite polynomials, and of the Maxwellian distribution in Chebyshev polynomials are also considered. The basic principles of Fourier series are presented and applied to quantum mechanical wave packets as well as the analysis of free induction decay signals. The resolution of the Gibbs phenomenon with the Gegenbauer reconstruction method is compared with the inverse polynomial reconstruction method. A resolution of the Runge phenonmena is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Georg Friedrich Bernhard Riemann (1826–1866) was a German mathematician who made fundamental contributions to topology, complex variables and integration.

  2. 2.

    (http://www.phy.iitb.ac.in/dkg/qmech/Lecture7.pdf).

  3. 3.

    Josiah Willard Gibbs (1839–1903) was an American physicist who made fundamental contributions to physics and mathematics, and to thermodynamics and statistical mechanics in chemistry where his name as associated for example with the Gibbs free energy and the Gibbs-Duhem equation. He is also know for his work on physical optics.

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office (1964)

    Google Scholar 

  • Adcock, B., Hansen, A.C.: Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 32, 357–388 (2012)

    Google Scholar 

  • Adomaitis, R.A.: Spectral filtering for improved performance of collocation discretization methods. Comput. Chem. Eng. 25, 1621–1632 (2001)

    Google Scholar 

  • Al-Gwaiz, M.A.: Sturm-Liouville Theory and Its Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Almeida, P.G.C., Benilov, M.S., Naidis, G.V.: Calculation of ion mobilities by means of the two-temperature displaced-distribution theory. J. Phys. D: Appl. Phys. 35, 1577–1584 (2002)

    ADS  Google Scholar 

  • Alp, Y.K., Arikan, O.: Time-frequency analysis of signals using support adaptive Hermite-Gaussian expansions. Digit. Signal Process. 22, 1010–1023 (2012)

    MathSciNet  Google Scholar 

  • Amore, P., Fernandez, F.M., Saenz, R.A., Salvo, K.: Collocation on uniform grids. J. Phys. A: Math. Theor. 42, 115302 (2009)

    ADS  MathSciNet  Google Scholar 

  • Archibald, R., Gelb, A.: Reducing the effects of noise in image reconstruction. J. Sci. Comput. 17, 167–180 (2002)

    MATH  MathSciNet  Google Scholar 

  • Asadchev, A., Gordon, M.S.: Mixed-precision evaluation of two-electron integrals by Rys quadrature. Comput. Phys. Commun. 183, 1563–1567 (2012)

    ADS  Google Scholar 

  • Balint-Kurti, G.G.: Wavepacket theory of photodissociation and reactive scattering. Adv. Chem. Phys. 128, 249–301 (2003)

    Google Scholar 

  • Balint-Kurti, G.G.: Time-dependent and time-independent wavepacket approaches to reactive scattering and photodissociation dynamics. Int. Rev. Phys. Chem. 27, 507–539 (2008)

    Google Scholar 

  • Balint-Kurti, G.G.: Wavepacket quantum dynamics. Theor. Chem. Acc. 127, 1–17 (2010)

    Google Scholar 

  • Balint-Kurti, G.G., Pulay, P.: A new grid-based method for the direct computation of excited molecular vibrational-states: test application to formaldehyde. J. Mol. Struct. (Theochem) 341, 1–11 (1995)

    Google Scholar 

  • Bao, W., Li, H., Shen, J.: A generalized Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates. J. Comput. Phys. 227, 9778–9793 (2008)

    Google Scholar 

  • Baye, D., Heenen, P.H.: Generalized meshes for quantum-mechanical problems. J. Phys. A: Math. Gen. 19, 2041–2059 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  • Baye, D., Vincke, V.: Lagrange meshes from nonclassical orthogonal polynomials. Phys. Rev. E 59, 7195–7199 (1999)

    ADS  Google Scholar 

  • Blackledge, J.M.: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications. Woodhead, Cambridge (2006)

    Google Scholar 

  • Blinnikov, S., Moessner, R.: Expansions for nearly Gaussian distributions. Astron. Astrophys. Suppl. Ser. 130, 193–205 (1998)

    ADS  Google Scholar 

  • Bonazzola, S., Gourgoulhon, E., Marck, J.-A.: Spectral methods in general relativistic astrophysics. J. Comput. Appl. Math. 109, 433–473 (1999)

    ADS  MATH  Google Scholar 

  • Boyd, J.P.: Exponentially convergent Fourier-Chebyshev quadrature schemes on bounded and infinite domains. J. Sci. Comput. 2, 99–109 (1987)

    Google Scholar 

  • Boyd, J.P.: A fast algorithm for Chebyshev, Fourier, and Sine interpolation onto an irregular grid. J. Comput. Phys. 103, 243–257 (1992)

    ADS  MATH  MathSciNet  Google Scholar 

  • Boyd, J.P.: A numerical comparison of seven grids for polynomial interpolation on the interval. Comput. Math. Appl. 38, 35–50 (1999)

    MATH  MathSciNet  Google Scholar 

  • Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  • Boyd, J.P.: Six strategies for defeating the Runge phenomenon in Gaussian radial basis functions on a finite interval. Comput. Math. Appl. 60, 3108–3122 (2010)

    Google Scholar 

  • Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part I: single-interval schemes. Commun. Comput. Phys. 5, 484–497 (2009)

    MathSciNet  Google Scholar 

  • Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, part two: multi-interval polynomial schemes and multidomain Chebyshev interpolation. Appl. Numer. Math. 61, 460–472 (2011)

    MATH  MathSciNet  Google Scholar 

  • Boyd, J.P., Rangan, C., Bucksbaum, P.H.: Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions. J. Comput. Phys. 188, 56–74 (2003)

    ADS  MATH  Google Scholar 

  • Briggs, W.L., Henson, V.E.: The DFT; An Owners Manual for the Discrete Fourier Transform. SIAM, Philadelphia (1995)

    Google Scholar 

  • Brown, J.W., Churchill, R.V.: Fourier Series and Boundary Value Problems. McGraw Hill, New Jersey (1993)

    Google Scholar 

  • Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, Boston (2011)

    Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Google Scholar 

  • Carlson, H.S.: A historical note on Gibb’s phenomenon in Fourier’s series and integrals. Bull. Am. Math. Soc. 31, 420–424 (1925)

    Google Scholar 

  • Cha, S.-H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)

    Google Scholar 

  • Chen, H., Shizgal, B.D.: A spectral solution of the Sturm-Liouville equation: comparison of classical and nonclassical basis sets. J. Comput. Appl. Math. 136, 17–35 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  • Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  • Cheney, W., Kincaid, D.: Numerical Methods and Computing, 6th edn. Brooks/Coll Publishing Company, California (2008)

    Google Scholar 

  • Chiang, L.-Y., Chen, F.-F.: Direct measurement of the angular power spectrum of cosmic microwave background temperature anisotropies in the WAMP data. Astrophys. J. 751, 1–6 (2012)

    ADS  Google Scholar 

  • Cochran, C., Gelb, A., Wang, Y.: Edge detection from truncated Fourier data using spectral mollifiers. Adv. Comput. Math. 38, 737–762 (2013)

    MATH  MathSciNet  Google Scholar 

  • Colbert, D.T., Miller, W.H.: A novel discrete variable representation for quantum-mechanical reactive scattering via the S-Matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992)

    ADS  Google Scholar 

  • Collier, M.R.: Are magnetospheric suprathermal particle distributions (\(\kappa \) functions) inconsistent with maximum entropy considerations. Adv. Space Res. 33, 2108–2112 (2004)

    ADS  Google Scholar 

  • Comisarow, M.B.: Fundamental aspects of FT-ICR and applications to chemistry. Hyperfine Interact. 81, 171–178 (1993)

    ADS  Google Scholar 

  • Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974)

    ADS  Google Scholar 

  • Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    MATH  MathSciNet  Google Scholar 

  • Dadkhahi, H., Gotchev, A., Egiazarian, K.: Inverse polynomial reconstruction method in DCT domain. EURASIP J. Adv. Signal Process. 2012, 1–23 (2012)

    ADS  Google Scholar 

  • Davis, P.J.: Interpolation and Approximation. Blaisdell, London (1963)

    MATH  Google Scholar 

  • Driscoll, T.A., Fornberg, B.: A Padé based algorithm for overcoming Gibbs phenomenon. Numer. Algorithms 26, 77–92 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  • Duarte, F.B., Tenreiro Machado, J.A., Duarte, G.M.: Dynamics of the Dow Jones and the NASDAQ stock indexes. Nonlinear Dyn. 61, 691–705 (2010)

    Google Scholar 

  • Durran, D.R.: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Springer, Berlin (2010)

    Google Scholar 

  • Ernst, R.R., Anderson, W.A.: Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum. 37, 93–102 (1966)

    ADS  Google Scholar 

  • Evans, G.A.: Some new thoughts on Gauss-Laguerre quadrature. Int. J. Comput. Math. 82, 721–730 (2005)

    MATH  MathSciNet  Google Scholar 

  • Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in Nlog\(_2\)N. SIAM J. Sci. Comput. 28, 1029–1053 (2006)

    MATH  MathSciNet  Google Scholar 

  • Filbet, F., Mouhot, C.: Analysis of spectral methods for the homogeneous Boltzmann equation. Trans. Am. Math. Soc. 363, 1947–1980 (2011)

    MATH  MathSciNet  Google Scholar 

  • Foch, J.D., Ford, G.W.: The linear Boltzmann equation. In: de Boer, J., Uhlenbeck, G.E. (eds.) Studies in Statistical Mechanics, pp. 127–154. Elsevier, Holland (1970)

    Google Scholar 

  • Fok, J.C.M., Guo, B., Tang, T.: Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comput. 71, 1497–1528 (2001)

    ADS  MathSciNet  Google Scholar 

  • Garcia, R.D.M.: The application of non-classical orthogonal polynomials in particle transport theory. Prog. Nucl. Energy 35, 249–273 (1999)

    Google Scholar 

  • Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20, 3–25 (2006)

    Google Scholar 

  • Gelb, A., Hines, T.: Recovering exponential accuracy from non-harmonic Fourier data through spectral reprojection. J. Sci. Comput. 51, 158–182 (2012)

    MATH  MathSciNet  Google Scholar 

  • Gibelli, L., Shizgal, B.D.: Spectral convergence of the Hermite basis function solution of the Vlasov equation, the free-streaming term. J. Comput. Phys. 219, 477–488 (2006)

    ADS  MATH  Google Scholar 

  • Gibelli, L., Shizgal, B.D., Yau, A.W.: Ion energization by wave-particle interactions: comparison of spectral and particle simulation solutions of the Vlasov equation. J. Comput. Phys. 59, 2566–2581 (2010)

    Google Scholar 

  • Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  • Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    MATH  Google Scholar 

  • Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    ADS  MATH  MathSciNet  Google Scholar 

  • Gottlieb, D., Gustafsson, B., Forssén, P.: On the direct Fourier method for computer tomography. IEEE Trans. Med. Imaging 19, 223–232 (2000)

    Google Scholar 

  • Gottlieb, D., Shu, C.-W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon 1: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43, 81–98 (1992)

    Google Scholar 

  • Gottlieb, S., Jung, J.H., Kim, S.: A review of David Gottlieb’s work on the resolution of the Gibbs phenomenon. Commun. Comput. Phys. 9, 497–519 (2011)

    MathSciNet  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Grandclément, P., Novak, J.: Spectral methods for numerical relativity. Living Rev. Relativ. 12, 1–103 (2009)

    Google Scholar 

  • Gust, E.D., Reichl, L.E.: Molecular dynamics simulation of collision operator eigenvalues. Phys. Rev. E 79, 031202 (2009)

    ADS  Google Scholar 

  • Haberman, R.: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th edn. Prentice Hall, Upper Saddle River (2013)

    Google Scholar 

  • Hanna, J.R., Rowland, J.H.: Fourier Series, Transforms, and Boundary Value Problems. Dover, New York (2008)

    Google Scholar 

  • Hau, L.-N., Fu, W.-Z.: Mathematical and physical aspects of Kappa velocity distribution. Phys. Plasmas 14, 110702 (2007)

    ADS  Google Scholar 

  • Hau, L.-N., Fu, W.-Z., Chuang, S.-H.: Response to Comment on mathematical and physical aspects of Kappa velocity distribution. Phys. Plasmas 16, 094702 (2009)

    Google Scholar 

  • Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., Saini, N.S.: Comment on mathematical and physical aspects of Kappa velocity distribution. Phys. Plasmas 16, 094701 (2009)

    ADS  Google Scholar 

  • Hewitt, E., Hewitt, R.E.: The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21, 129–160 (1979)

    MATH  MathSciNet  Google Scholar 

  • Hoare, M.R., Kaplinsky, C.H.: Linear hard sphere gas: variational eigenvalue spectrum of the energy kernel. J. Chem. Phys. 52, 3336–3353 (1970)

    ADS  MathSciNet  Google Scholar 

  • Holloway, J.P.: Spectral discretizations of the Vlasov-Maxwell equations. Trans. Theory Stat. Phys. 25, 1–32 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  • Holway, L.H.: Time varying weight functions and the convergence of polynomial expansions. Phys. Fluids 10, 35–48 (1967)

    ADS  Google Scholar 

  • Hrycak, T., Grchenig, K.: Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys. 229, 933–946 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  • Hunter, C.: Spectral analysis of orbits via discrete Fourier transforms. Space Sci. Rev. 102, 83–99 (2002)

    ADS  Google Scholar 

  • Hurn, A.S., Jeisman, J.I., Lindsay, K.A.: Seeing the wood for the trees: a critical evaluation of methods to estimate the parameters of stochastic differential equations. J. Financ. Econ. 5, 390–455 (2007)

    Google Scholar 

  • James, J.F.: A Student’s Guide to Fourier Transforms, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Jerri, A.J.: The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Kluwer, Boston (1998)

    MATH  Google Scholar 

  • Jerri, A.J.: Introduction to Integral Equations with Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  • Jerri, A.J.: Advances in Gibbs Phenomenon. Sampling, Potsdam (2011)

    Google Scholar 

  • Jirari, A.: Second order Sturm-Liouville difference equations and orthogonal polynomials. Mem. Am. Math. Soc. 113(542), (1995)

    Google Scholar 

  • Jung, J.-H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)

    MATH  MathSciNet  Google Scholar 

  • Jung, J.-H.: A hybrid method for the resolution of the Gibbs phenomenon. In: Hesthaven, J.S., Ronquist, E.M. (eds.) Lecture Notes in Computational Science and Engineering, pp. 219–227. Springer, Berlin (2011)

    Google Scholar 

  • Jung, J.-H., Shizgal, B.D.: Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon. J. Comput. Appl. Math. 172, 131–151 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  • Jung, J.-H., Shizgal, B.D.: Inverse polynomial reconstruction of two dimensional Fourier images. J. Sci. Comput. 25, 367–399 (2005)

    MATH  MathSciNet  Google Scholar 

  • Jung, J.-H., Shizgal, B.D.: On the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon. J. Comput. Phys. 224, 477–488 (2007)

    Google Scholar 

  • Jung, J.-H., Stefan, W.: A simple regularization of the polynomial interpolation for the resolution of the Runge phenomenon. J. Sci. Comput. 46, 225–242 (2011)

    MATH  MathSciNet  Google Scholar 

  • Jung, K.-J., Zhao, T.: Parallel imaging with asymmetric acceleration to reduce Gibbs artifacts and to increase signal-to-noise ratio of the gradient echo echo-planar imaging sequence for functional MRI. Magn. Reson. Med. 67, 419–427 (2012)

    Google Scholar 

  • Kamm, J.R., Williams, T.O., Brock, J.S., Li, S.: Application of Gegenbauer polynomial expansions to mitigate Gibbs phenomenon in Fourier-Bessel series solutions of a dynamic sphere problem. Int. J. Numer. Meth. Biomed. Eng. 26, 1276–1292 (2010)

    MATH  MathSciNet  Google Scholar 

  • Kaur, P., Kumaran, S.S., Tripathi, R.P., Khushu, S., Kaushik, S.: Protocol error artifacts in MRI: sources and remedies revisited. Radiography 13, 291–306 (2007)

    Google Scholar 

  • Koay, C.G., Sarlls, J.E., Özarslan, E.: Three-dimensional analytical magnetic resonance imaging phantom in the Fourier domain. Magn. Reson. Med. 58, 430–436 (2007)

    Google Scholar 

  • Kokoouline, V., Dulieu, O., Kosloff, R., Masnou-Seeuws, F.: Mapped Fourier methods for long-range molecules: application to perturbations in the Rb\(_2\)(0\(^+_u\)) photoassociation spectrum. J. Chem. Phys. 110, 9865–9876 (1999)

    ADS  Google Scholar 

  • Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations Algorithms for Scientists and Engineers. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Kosloff, R.: The Fourier method. In: Cerjan, C. (ed.) Numerical Grid Methods and Their Application to Schrödinger’s Equation, pp. 175–194. Kluwer Academic, The Netherlands (1993)

    Google Scholar 

  • Kosloff, D., Kosloff, R.: A Fourier method solution for the time-dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 52, 35–53 (1983)

    Google Scholar 

  • Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    MATH  MathSciNet  Google Scholar 

  • Lanczos, C.: Discourse on Fourier Series. Hafner, New York (1966)

    MATH  Google Scholar 

  • Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Physica D 67, 257–281 (1993)

    Google Scholar 

  • Laskar, J., Correia, A.C.M.: HD60532, a planetary system in a 3:1 mean motion resonance. Astron. Astrophys. 496, L4–L8 (2009)

    ADS  Google Scholar 

  • Le Bourdiec, S., de Vuyst, F., Jacquet, L.: Numerical solution of the Vlasov-Poisson system using generalized Hermite functions. Comput. Phys. Commun. 175, 528–544 (2006)

    ADS  MATH  Google Scholar 

  • Le Mouël, J.-L., Shnirman, M.G., Blanter, E.M.: The 27-day signal in sunspot number series and the solar dynamo. Sol. Phys. 246, 295–307 (2007)

    ADS  Google Scholar 

  • Leblanc, F., Hubert, D.: A generalized model for the proton expansion in astrophysical winds. I. The velocity distribution function representation. Astrophys. J. 483, 464–474 (1997)

    ADS  Google Scholar 

  • Leubner, M.P., Vörös, Z.: A nonextensive entropy approach to solar wind intermittency. Astrophys. J. 618, 547–555 (2005)

    ADS  Google Scholar 

  • Liboff, R.L.: Introductory Quantum Mechanics, 4th edn. Addison-Wesley, New York (2002)

    Google Scholar 

  • Livadiotis, G., McComas, D.J.: Beyond Kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105 (2009)

    ADS  Google Scholar 

  • Lo, J.Q.-W., Shizgal, B.D.: An efficient mapped pseudospectral method for weakly bound states: vibrational states of He\(_2\), Ne\(_2\), Ar\(_2\) and Cs\(_2\). J. Phys. B: At. Mol. Opt. Phys. 41, 185103 (2008)

    Google Scholar 

  • March, R., Barone, P.: Reconstruction of a piecewise constant function from noisy Fourier coefficients by Padé method. SIAM J. Appl. Math. 60, 1137–1156 (2000)

    MATH  MathSciNet  Google Scholar 

  • Martens, J.: The Hermite transform: a survey. J. Appl. Signal Proc. 2006, 1–20 (2006)

    MATH  Google Scholar 

  • Meijering, E.: A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE 90, 319–342 (2002)

    Google Scholar 

  • Messiah, A.: Quantum Mechanics, vol. I. North Holland, Amsterdam (1961)

    Google Scholar 

  • Meyer, R.: Trigonometric interpolation method for one-dimensional quantum-mechanical problems. J. Chem. Phys. 52, 2053–2059 (1970)

    ADS  Google Scholar 

  • Meyer-Vernet, N.: Large scale structure of planetary environments: the importance of not being Maxwellian. Planet. Space Sci. 49, 247–260 (2001)

    ADS  Google Scholar 

  • Mintzer, D.: Generalized orthogonal polynomial solutions of the Boltzmann equation. Phys. Fluids 8, 1076–1090 (1965)

    ADS  MATH  Google Scholar 

  • Moler, C.: Numerical Computing in MATLAB. SIAM, Philadelphia (2008)

    Google Scholar 

  • Nauenberg, M.: Critique of q-entropy for thermal statistics. Phys. Rev. E 67, 036114 (2003)

    ADS  Google Scholar 

  • Olmos, D.: Reflection and attachment of spirals at obstacles for the Fitzhugh-Nagumo and Beeler-Reuter models. Phys. Rev. E 81, 041924 (2010)

    ADS  MathSciNet  Google Scholar 

  • Olmos, D., Shizgal, B.D.: A pseudospectral method of solution of Fisher’s equation. J. Comput. Appl. Math 193, 219–242 (2006)

    Google Scholar 

  • Paul, W., Baschnagel, J.: Stochastic Processes. From Physics to Finance, 2nd edn. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Petrovay, K.: Solar cycle prediction. Living Rev. Sol. Phys. 7, 6–59 (2010)

    ADS  Google Scholar 

  • Pierrard, V., Lazar, V.: Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153–174 (2010)

    ADS  Google Scholar 

  • Pindza, E., Patidar, K.C., Ngounda, E.: Robust spectral method for numerical valuation of European options under Merton’s jump-diffusion model. Numer. Methods Partial Differ. Equ. 30, 1169–1188 (2014)

    Google Scholar 

  • Pinkus, A.: Weierstrass and approximation theory. J. Approx. Theory 107, 1–66 (2000)

    MATH  MathSciNet  Google Scholar 

  • Risken, H., Till, F.: The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Rivlin, T.J.: An Introduction to the Approximation of Functions. Blaisdell Publishing Co., Toronto (1969)

    MATH  Google Scholar 

  • Russo, G., Smereka, P.: The Gaussian wave packet transform: efficient computation of the semi-classical limit of the Schrödinger equation. Part 1. Formulation and the one dimensional case. J. Comput. Phys. 233, 192–209 (2013)

    Google Scholar 

  • Russo, G., Smereka, P.: The Gaussian wave packet transform: efficient computation of the semi-classical limit of the Schrödinger equation. Part 2. Multidimensional case. J. Comput. Phys. 257, 1022–1038 (2014)

    ADS  MathSciNet  Google Scholar 

  • Schwartz, C.: High-accuracy approximation techniques for analytic functions. J. Math. Phys. 26, 411–415 (1985)

    ADS  MATH  MathSciNet  Google Scholar 

  • Schumer, J.W., Holloway, J.P.: Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144, 626–661 (1998)

    ADS  MATH  Google Scholar 

  • Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high dimensional elliptic equations II. Unbounded domains. SIAM J. Sci. Comput. 34, A1141–A1164 (2012)

    MATH  MathSciNet  Google Scholar 

  • Shizgal, B., Karplus, M.: Nonequilibrium contributions to the rate of reaction. II. Isolated multicomponent systems. J. Chem. Phys. 54, 4345–4356 (1971)

    ADS  Google Scholar 

  • Shizgal, B.D., Jung, J.-H.: Towards the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 161, 41–65 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  • Shizgal, B.D., Dridi, R.: Maple code for the calculation of the matrix elements of the Boltzmann collision operators for mixtures. Comput. Phys. Commun. 181, 1633–1640 (2010)

    ADS  MATH  Google Scholar 

  • Stare, J., Balint-Kurti, G.G.: Fourier grid Hamiltonian method for solving the vibrational Schrödinger equation in internal coordinates: theory and test applications. J. Phys. Chem. A 107, 7204–7214 (2003)

    Google Scholar 

  • Stefan, W., Viswanathan, A., Gelb, A., Renaut, R.: Sparsity enforcing edge detection method for blurred and noisy Fourier data. J. Sci. Comput. 50, 536–556 (2012)

    MATH  MathSciNet  Google Scholar 

  • Steffens, K.G.: The History of Approximation Theory: From Euler to Bernstein. Birkhäuser, Boston (2006)

    Google Scholar 

  • Tadmor, E., Tanner, J.: Adaptive mollifiers for high resolution recovery of piecewise smooth data from its spectral information. Found. Comput. Math. 2, 155–189 (2002)

    MATH  MathSciNet  Google Scholar 

  • Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14, 594–606 (1993)

    MATH  MathSciNet  Google Scholar 

  • Tangman, D.Y., Gopaul, A., Bhuruth, M.: Exponential time integration and Chebyshev discretisation schemes for fast pricing of options. Appl. Numer. Math. 58, 1309–1319 (2008)

    MATH  MathSciNet  Google Scholar 

  • Tatari, M., Haghighi, M.: A generalized Laguerre-Legendre spectral collocation method for solving initial-boundary value problems. Appl. Math. Model. 38, 1351–1364 (2014)

    Google Scholar 

  • Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  • Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  • Tsallis, C.: Non-extensive thermostatics: brief review and comments. Physica A 221, 277–290 (1995)

    Google Scholar 

  • Tsallis, C.: Comment on Critique of q-entropy for thermal statistics. Phys. Rev. E 69, 038101 (2004)

    ADS  Google Scholar 

  • van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland, Amsterdam (2007)

    Google Scholar 

  • Viehland, L.A.: Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram-Charlier approach. Chem. Phys. 179, 71–92 (1994)

    ADS  Google Scholar 

  • Vozovoi, L., Weill, A., Israeli, M.: Spectrally accurate solution of nonperiodic differential equations by the Fourier-Gegenbauer method. SIAM J. Numer. Anal. 34, 1451–1471 (1997)

    MATH  MathSciNet  Google Scholar 

  • Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comput. 81, 861–877 (2012)

    MATH  MathSciNet  Google Scholar 

  • Weideman, W.A.C.: Spectral methods based on non-classical polynomials. In: Gautschi, G., Golub, G.H., Opfer, G. (eds.) Approximations and Computation of Orthogonal Polynomials, pp. 239–251. Burkhauser, Basel (1999)

    Google Scholar 

  • Weniger, E.J.: On the analyticity of Laguerre series. J. Phys. A: Math. Theor. 41, 425207 (2008)

    ADS  MathSciNet  Google Scholar 

  • Weniger, E.J.: The strange history of B functions or how theoretical chemists and mathematicians do (not) interact. Int. J. Quant. Chem. 109, 1706–1716 (2009)

    ADS  Google Scholar 

  • Wilbraham, H.: On certain periodic functions. Camb. Dublin Math. J. 3, 198–201 (1848)

    Google Scholar 

  • Williams, P.: Quadrature discretization method in tethered satellite control. Appl. Math. Comput. 217, 8223–8235 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  • Xiang, S.: Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 393, 434–444 (2012)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Shizgal .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shizgal, B. (2015). Representation of Functions in Basis Sets. In: Spectral Methods in Chemistry and Physics. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9454-1_4

Download citation

Publish with us

Policies and ethics