Skip to main content

p53 at the Crossroads Between Stress Response Signaling and Tumorigenesis: From Molecular Mechanisms to Therapeutic Opportunities

  • Chapter
  • First Online:
Stress Response Pathways in Cancer

Abstract

The p53 tumor suppressor is a transcription factor that integrates signals from numerous stress-activated signaling pathways and regulates the expression of specific target genes. p53 activation triggers a variety of cellular responses that ensure tumor suppression, including cell cycle arrest, apoptosis and senescence. In addition, p53 tumor suppressive activity also involves the maintenance of cellular homeostasis through the regulation of metabolic pathways and the protection of stemness.

Mutation of p53 protein or inactivation of the p53 pathway is the most frequent alteration found in human cancer. Loss of p53 function leads to tumorigenesis and is associated with poor prognosis and therapy resistance in cancer patients. Moreover, mutant p53 often exhibits gain of function activities that contribute to the tumoral phenotype.

Over 30 years of basic research on p53 structure and function have placed p53 at the center of cancer investigation. Numerous cellular and mouse models have demonstrated that restoration of p53 function may stop tumor progression or even promote tumor regression. Now, these observations lead to the development of multiple anti-cancer therapeutic strategies that rely on activation of wild-type p53 or reactivation of mutant p53, as well as other p53-based approaches. Rational drug design and functional screenings have allowed for the identification of small molecule compounds, some of which are currently being tested in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, Cooney AJ, Li W, Barton MC (2014) Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 42(1):205–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8(3):145–155

    CAS  PubMed  Google Scholar 

  • Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11(1):15–23

    CAS  PubMed  Google Scholar 

  • Aloni-Grinstein R, Shetzer Y, Kaufman T, Rotter V (2014) p53: the barrier to cancer stem cell formation. FEBS Lett 588:2580–2589

    CAS  PubMed  Google Scholar 

  • Asher G, Tsvetkov P, Kahana C, Shaul Y (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19(3):316–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    CAS  PubMed  Google Scholar 

  • Berk AJ (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24(52):7673–7685

    CAS  PubMed  Google Scholar 

  • Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A (2002) Deconstructing PML-induced premature senescence. Embo J 21(13):3358–3369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bocchetta M, Eliasz S, De Marco MA, Rudzinski J, Zhang L, Carbone M (2008) The SV40 large T antigen-p53 complexes bind and activate the insulin-like growth factor-I promoter stimulating cell growth. Cancer Res 68(4):1022–1029

    CAS  PubMed  Google Scholar 

  • Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci U S A 105(30):10360–10365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19(18):2122–2137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9(10):701–713

    CAS  PubMed  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304(5670):596–600

    CAS  PubMed  Google Scholar 

  • Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pebusque MJ, Dusetti NJ, Iovanna JL, Carrier A (2009) Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 69(1):219–226

    CAS  PubMed  Google Scholar 

  • Chene P (2004) Inhibition of the p53-hdm2 interaction with low molecular weight compounds. Cell Cycle 3(4):460–461

    CAS  PubMed  Google Scholar 

  • Comel A, Sorrentino G, Capaci V, Del Sal G (2014) The cytoplasmic side of p53′s oncosuppressive activities. FEBS Lett 588:2600–2609

    CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    CAS  PubMed  Google Scholar 

  • Culotta E, Koshland DE Jr (1993) p53 sweeps through cancer research. Science 262(5142):1958–1961

    CAS  PubMed  Google Scholar 

  • Dai C, Gu W (2010) p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16(11):528–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G, Lowe SW (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13(4):523–535

    PubMed  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ (1993) Gain of function mutations in p53. Nat Genet 4(1):42–46

    CAS  PubMed  Google Scholar 

  • Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G, Diehl D, Schlenk R, Coy J, Stilgenbauer S et al (1995) p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85(6):1580–1589

    CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221

    CAS  PubMed  Google Scholar 

  • Doyle JM, Gao J, Wang J, Yang M, Potts PR (2010) MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 39(6):963–974

    CAS  PubMed  Google Scholar 

  • Drane P, Bravard A, Bouvard V, May E (2001) Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 20(4):430–439

    CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    CAS  PubMed  Google Scholar 

  • Essmann F, Schulze-Osthoff K (2012) Translational approaches targeting the p53 pathway for anti-cancer therapy. Br J Pharmacol 165(2):328–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 102(23):8204–8209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67(7):3043–3053

    CAS  PubMed  Google Scholar 

  • Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26(12):1268–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frezza C, Martins CP (2012) From tumor prevention to therapy: empowering p53 to fight back. Drug Resist Updat 15(5–6):258–267

    CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grochola LF, Zeron-Medina J, Meriaux S, Bond GL (2010) Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol 2(5):a001032

    PubMed Central  PubMed  Google Scholar 

  • Gu B, Zhu WG (2012) Surf the post-translational modification network of p53 regulation. Int J Biol Sci 8(5):672–684

    PubMed Central  PubMed  Google Scholar 

  • Halaby MJ, Yang DQ (2007) p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene 395(1–2):1–7

    CAS  PubMed  Google Scholar 

  • Hamada M, Fujiwara T, Hizuta A, Gochi A, Naomoto Y, Takakura N, Takahashi K, Roth JA, Tanaka N, Orita K (1996) The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J Cancer Res Clin Oncol 122(6):360–365

    CAS  PubMed  Google Scholar 

  • Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE (2008) SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2(3):241–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U (2013) Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 20(7):898–909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265(5181):2091–2093

    CAS  PubMed  Google Scholar 

  • Hoe KK, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13(3):217–236

    PubMed  Google Scholar 

  • Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. Embo J 18(1):22–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM (1993) Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 13(2):775–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7

    CAS  PubMed  Google Scholar 

  • Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73

    PubMed  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618

    CAS  PubMed  Google Scholar 

  • Kenzelmann Broz D, Attardi LD (2010) In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis 31(8):1311–1318

    CAS  PubMed  Google Scholar 

  • Kim SH, Dass CR (2011) p53-targeted cancer pharmacotherapy: move towards small molecule compounds. J Pharm Pharmacol 63(5):603–610

    CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185

    CAS  PubMed  Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ladelfa MF, Peche LY, Toledo MF, Laiseca JE, Schneider C, Monte M (2011) Tumor-specific MAGE proteins as regulators of p53 function. Cancer Lett 325(1):11–17

    Google Scholar 

  • Ladelfa MF, Toledo MF, Laiseca JE, Monte M (2012) Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 15(6):1749–1761

    Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    CAS  PubMed  Google Scholar 

  • Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278(5701):261–263

    CAS  PubMed  Google Scholar 

  • Lane DP, Cheok CF, Lain S (2010) p53-based cancer therapy. Cold Spring Harb Perspect Biol 2(9):a001222

    PubMed Central  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119(6):861–872

    CAS  PubMed  Google Scholar 

  • Laronga C, Yang HY, Neal C, Lee MH (2000) Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275(30):23106–23112

    CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    CAS  PubMed  Google Scholar 

  • Lee SW, Seong MW, Jeon YJ, Chung CH (2012) Ubiquitin E3 ligases controlling p53 stability. Anim Cells Syst 16(3):173–182

    CAS  Google Scholar 

  • Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, Rogers AB, Montrose M, Houghton J (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67(22):10889–10898

    CAS  PubMed  Google Scholar 

  • Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7(2):165–171

    CAS  PubMed  Google Scholar 

  • Liu X, Yue P, Khuri FR, Sun SY (2004) p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64(15):5078–5083

    CAS  PubMed  Google Scholar 

  • Llanos S, Clark PA, Rowe J, Peters G (2001) Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 3(5):445–452

    CAS  PubMed  Google Scholar 

  • Lu W, Pochampally R, Chen L, Traidej M, Wang Y, Chen J (2000) Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19(2):232–240

    CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107(2):137–148

    CAS  PubMed  Google Scholar 

  • Machado-Silva A, Perrier S, Bourdon JC (2010) p53 family members in cancer diagnosis and treatment. Semin Cancer Biol 20(1):57–62

    CAS  PubMed  Google Scholar 

  • Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89(3):237–245

    CAS  Google Scholar 

  • Malkin D (2011) Li-fraumeni syndrome. Genes Cancer 2(4):475–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcar L, Maclaine NJ, Hupp TR, Meek DW (2010) Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin. Cancer Res 70(24):10362–10370

    CAS  PubMed  Google Scholar 

  • Marine JC, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331(3):750–760

    CAS  PubMed  Google Scholar 

  • Markey MP (2008) Regulation of MDM4. Front Biosci (Landmark Ed) 16:1144–1156

    Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127(7):1323–1334

    CAS  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    CAS  PubMed  Google Scholar 

  • Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1(14):1017–1026

    CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713

    CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299

    CAS  PubMed  Google Scholar 

  • Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  • Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A 89(15):7262–7266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A 92(10):4407–4411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monte M, Simonatto M, Peche LY, Bublik DR, Gobessi S, Pierotti MA, Rodolfo M, Schneider C (2006) MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A 103(30):11160–11165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35(6):323–332

    CAS  PubMed  Google Scholar 

  • Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, Cecconi F, Muller H, Helin K (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3(6):552–558

    CAS  PubMed  Google Scholar 

  • Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8

    CAS  PubMed  Google Scholar 

  • Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25(3):304–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188(11):2033–2045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13(6):962–972

    CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7(3):683–694

    CAS  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288(5468):1053–1058

    CAS  PubMed  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362(6423):857–860

    CAS  PubMed  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406(6792):207–210

    CAS  PubMed  Google Scholar 

  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26(15):2157–2165

    CAS  PubMed  Google Scholar 

  • Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE, Salter DM, Bird CC, Wyllie AH, Hooper ML et al (1994) Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9(2):603–609

    CAS  PubMed  Google Scholar 

  • Rao B, Lain S, Thompson AM (2013) p53-based cyclotherapy: exploiting the ‘guardian of the genome’ to protect normal cells from cytotoxic therapy. Br J Cancer 109(12):2954–2958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, Jones LA, El-Naggar A, Minguillon C, Schonborn I, Reich O, Kreienberg R, Lichtenegger W, Press MF (2001) Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res 7(10):2984–2997

    CAS  PubMed  Google Scholar 

  • Riley MF, Lozano G (2012) The many faces of MDM2 binding partners. Genes Cancer 3(3–4):226–239

    PubMed Central  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412

    CAS  PubMed  Google Scholar 

  • Rodriguez R, Rubio R, Menendez P (2012) Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res 22(1):62–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogel A, Popliker M, Webb CG, Oren M (1985) p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol Cell Biol 5(10):2851–2855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubio R, Garcia-Castro J, Gutierrez-Aranda I, Paramio J, Santos M, Catalina P, Leone PE, Menendez P, Rodriguez R (2010) Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Res 70(10):4185–4194

    CAS  PubMed  Google Scholar 

  • Sabapathy K, Klemm M, Jaenisch R, Wagner EF (1997) Regulation of ES cell differentiation by functional and conformational modulation of p53. Embo J 16(20):6217–6229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4(11):842–849

    CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136

    CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M (2010) p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A 107(43):18511–18516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633

    CAS  PubMed  Google Scholar 

  • Selivanova G (2010) Therapeutic targeting of p53 by small molecules. Semin Cancer Biol 20(1):46–56

    CAS  PubMed  Google Scholar 

  • Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shelling AN (1997) Role of p53 in drug resistance in ovarian cancer. Lancet 349(9054):744–745

    CAS  PubMed  Google Scholar 

  • Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M, Rotter V (2006) Regulation of AIF expression by p53. Cell Death Differ 13(12):2140–2149

    CAS  PubMed  Google Scholar 

  • Stegh AH (2012) Targeting the p53 signaling pathway in cancer therapy – the promises, challenges and perils. Expert Opin Ther Targets 16(1):67–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J 17(17):5001–5014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  PubMed  Google Scholar 

  • Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274(17):12061–12066

    CAS  PubMed  Google Scholar 

  • van Leeuwen IM, Rao B, Sachweh MC, Lain S (2012) An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells. Cell Cycle 11(9):1851–1861

    PubMed Central  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128):661–665

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    CAS  PubMed  Google Scholar 

  • Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700

    CAS  PubMed  Google Scholar 

  • Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei J, Zaika E, Zaika A (2012) p53 family: role of protein isoforms in human cancer. J Nucleic Acids 2012:687359

    PubMed Central  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105(48):18782–18787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu GS, Burns TF, McDonald ER 3rd, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, el-Deiry WS (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17(2):141–143

    CAS  PubMed  Google Scholar 

  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118(1):83–97

    CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660

    CAS  PubMed  Google Scholar 

  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404(6773):99–103

    CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18(2):90–95

    PubMed  Google Scholar 

  • Yang B, O’Herrin SM, Wu J, Reagan-Shaw S, Ma Y, Bhat KM, Gravekamp C, Setaluri V, Peters N, Hoffmann FM, Peng H, Ivanov AV, Simpson AJ, Longley BJ (2007) MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 67(20):9954–9962

    CAS  PubMed  Google Scholar 

  • Yeung SJ, Pan J, Lee MH (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis – the seventh hallmark of cancer. Cell Mol Life Sci 65(24):3981–3999

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Monte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giono, L.E., Ladelfa, M.F., Monte, M. (2015). p53 at the Crossroads Between Stress Response Signaling and Tumorigenesis: From Molecular Mechanisms to Therapeutic Opportunities. In: Wondrak, G. (eds) Stress Response Pathways in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9421-3_4

Download citation

Publish with us

Policies and ethics