Skip to main content

Biosensing Instrumentation

  • Conference paper
  • First Online:
Nano-Structures for Optics and Photonics

Abstract

Functionalized nanoparticles revolutionized the sensing and imaging of biological samples. A particularly spectacular example was recently achieved with harmonic nanoparticles (HNPs), which allow coherent emission at harmonics of the fundamental wavelength over the whole VIS-NIR spectral range. Deep imaging, nanoscale in situ spatio-temporal focus characterization, on-line monitoring of stem cell differentiation and cancer theranostics are demonstrated. A further ground-breaking coherent approach is based on coherent control of endogenous biomolecules, which provides chemical selectivity at the protein level even “label-free”. State of the art and perspectives related to these new biosensing developments are presented

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Extermann J, Bonacina L, Cuna E, Kasparian C, Mugnier Y, Feurer T, Wolf JP (2009) Nanodoublers as deep imaging markers for multi-photon microscopy. Optics Express 17:15342–15349

    Article  ADS  Google Scholar 

  2. Extermann J, Bonacina L, Courvoisier F, Kiselev D, Mugnier Y, Le Dantec R, Galez C, Wolf JP (2008) Nano-FROG: Frequency resolved optical gating by a nanometric object. Opt Express 16:10405–10411

    Article  ADS  Google Scholar 

  3. Courvoisier F, Boutou V, Guyon L, Roth M, Rabitz H, Wolf JP (2006) Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics. J Photochem Photobiol A-Chem 180:300–306

    Article  Google Scholar 

  4. Courvoisier F, Boutou V, Wood V, Bartelt A, Roth M, Rabitz H, Wolf JP (2005) Femtosecond laser pulses distinguish bacteria from background urban aerosols. Appl Phys Lett 87:063901

    Article  ADS  Google Scholar 

  5. Petersen J, Mitric R, Bonacic-Koutecky V, Wolf JP, Roslund J, Rabitz H (2010) How shaped light discriminates nearly identical biochromophores. Phys Rev Lett 105:073003

    Article  ADS  Google Scholar 

  6. Roslund J, Roth M, Guyon L, Boutou V, Courvoisier F, Wolf JP, Rabitz H (2011) Resolution of strongly competitive product channels with optimal dynamic discrimination: application to flavins. J Chem Phys 134:034511

    Article  ADS  Google Scholar 

  7. Roth M, Guyon L, Roslund J, Boutou V, Courvoisier F, Wolf JP, Rabitz H (2009) Quantum control of tightly competitive product channels. Phys Rev Lett 102:253001

    Article  ADS  Google Scholar 

  8. Rondi A, Bonacina L, Trisorio A, Hauri C, Wolf J-P (2012) Coherent manipulation of free amino acids fluorescence. Phys Chem Chem Phys 14:9317–9322

    Article  Google Scholar 

  9. Afonina S, Nenadl O, Rondi A, Bonacina L, Extermann J, Kiselev D, Dolamic I, Burgi T, Wolf JP (2013) Discriminability of tryptophan containing dipeptides using quantum control. App Phys B 111:541–549

    Article  ADS  Google Scholar 

  10. Staedler D, Magouroux T, Joulaud C, Extermann J, Hadji R, Kasparian C, Gerber S, Le Dantec R, Mugnier Y, Juillerat L, Rytz D, Ciepielewski D, Bonacina L, Wolf J-P (2012) Harmonic nanocrystals for bio-labeling: a survey of optical properties and biocompatibility. ACS Nano 6(3):2542–2549

    Article  Google Scholar 

  11. Le Dantec R, Mugnier Y, Djanta G, Bonacina L, Extermann J, Badie L, Joulaud C, Gerrmann M, Rytz D, Wolf JP, Gale C (2011) Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals. J Phys Chem 115(31): 15140–15146

    Google Scholar 

  12. Bonacina L, Mugnier Y, Courvoisier F, Le Dantec R, Extermann J, Lambert Y, Boutou V, Galez C, Wolf JP (2007) Polar Fe(IO3)(3) nanocrystals as local probes for nonlinear microscopy. Appl Phys B-Lasers Opt 87:399–403

    Article  ADS  Google Scholar 

  13. Baumner R, Bonacina L, Enderlein J, Extermann J, Fricke-Begemann T, Marowsky G, Wolf JP (2010) Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles. Opt Express 18:23218–23225

    Article  ADS  Google Scholar 

  14. Extermann J, Béjot P, Bonacina L, Mugnier Y, Le Dantec R, Mazingue T, Galez C, Wolf JP (2009) An inexpensive nonlinear medium for intense ultrabroadband pulse characterization. Appl Phys B 97:537–540

    Article  ADS  Google Scholar 

  15. Le Xuan L, Brasselet S, Treussart F, Roch JF,,Marquier F, Chauvat D, Perruchas S, Tard C, Gacoin, T (2006) Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters. Appl Phys Lett 89:121118

    Article  ADS  Google Scholar 

  16. Pu Y, Centurion M, Psaltis D (2008) Harmonic holography: a new holographic principle. Appl Opt 47:A103–A110

    Article  ADS  Google Scholar 

  17. Hsieh CL, Pu Y, Grange R, Laporte G, Psaltis D (2010) Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt Express 18:20723–20731

    Article  ADS  Google Scholar 

  18. Hsieh CL, Pu Y, Grange R, Psaltis D (2010) Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt Express 18:12283–12290

    Article  Google Scholar 

  19. Squier JA, Muller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Express 3:315–324

    Article  ADS  Google Scholar 

  20. Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514

    Article  ADS  Google Scholar 

  21. von Vacano B, Wohlleben W, Motzkus M (2006) Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy. Opt Lett 31:413–415

    Article  ADS  Google Scholar 

  22. Ogilvie JP, Debarre D, Solinas X, Martin JL, Beaurepaire E, Joffre M (2006) Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt Express 14:759–766

    Article  ADS  Google Scholar 

  23. Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Dimler F, Fischer A, Pfeiffer W, Rohmer M, Schneider C, Steeb F, Struber C, Voronine DV (2010) Spatiotemporal control of nanooptical excitations. Proc Natl Acad Sci U S A 107:5329–5333

    Article  ADS  Google Scholar 

  24. Fuchs U, Zeitner UD, Tunnermann A (2005) Ultra-short pulse propagation in complex optical systems. Opt Express 13:3852–3861

    Article  ADS  Google Scholar 

  25. Tal E, Oron D, Silberberg Y (2005) Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt Lett 30:1686–1688

    Article  ADS  Google Scholar 

  26. Muller M, Squier J, Brakenhoff GJ (1995) Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by 2-photon absorption. Opt Lett 20:1038–1040

    Article  ADS  Google Scholar 

  27. Brixner T, De Abajo FJG, Spindler C, Pfeiffer W (2006) Adaptive ultrafast nano-optics in a tight focus. Appl Phys B-Lasers Opt 84:89–95

    Article  ADS  Google Scholar 

  28. Amat-Roldan I, Cormack IG, Loza-Alvarez P, Artigas D (2004) Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens. Opt Lett 29:2282–2284

    Article  ADS  Google Scholar 

  29. Bowlan P, Gabolde P, Trebino R (2007) Directly measuring the spatio-temporal electric field of focusing ultrashort pulses. Opt Express 15:10219–10230

    Article  ADS  Google Scholar 

  30. Magouroux T, Extermann J, Hoffmann P, Mugnier Y, Le Dantec R, Jaconi M, Kasparian C, Ciepielewski D, Bonacina L, Wolf JP (2012) High-speed tracking of murine cardiacstem cells by harmonic nanodoublers. Small 8(17):2752–2756

    Article  Google Scholar 

  31. Vunjak-Novakovic G, Godier-Furnemont AFG, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang GP, Hudson B, Homma S (2011) Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A 108:7974–7979

    Article  ADS  Google Scholar 

  32. Tannor DJ, Kosloff R, Rice SA (1986) Coherent pulse sequence induced control of selectivity of reactions – exact quantum-mechanical calculations. J Chem Phys 85:5805–5820

    Article  ADS  Google Scholar 

  33. Tannor DJ, Rice SA (1985) Control of selectivity of chemical-reaction via control of wave packet evolution. J Chem Phys 83:5013–5018

    Article  ADS  Google Scholar 

  34. Judson RS, Rabitz H (1992) Teaching lasers to control molecules. Phys Rev Lett 68:1500–1503

    Article  ADS  Google Scholar 

  35. Warren WS, Rabitz H, Dahleh M (1993) Coherent control of quantum dynamics – the dream is alive. Science 259:1581–1589

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Weiner AM (2000) Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71:1929–1960

    Article  ADS  Google Scholar 

  37. Bonacina L, Extermann J, Rondi A, Boutou V, Wolf JP (2007) Multiobjective genetic approach for optimal control of photoinduced processes. Phys Rev A 76:023408

    Article  ADS  Google Scholar 

  38. Dantus M, Lozovoy VV (2004) Experimental coherent laser control of physicochemical processes. Chem Rev 104:1813–1859

    Article  Google Scholar 

  39. Levis RJ, Menkir GM, Rabitz H (2001) Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292:709–713

    Article  ADS  Google Scholar 

  40. Brixner T, Damrauer NH, Niklaus P, Gerber G (2001) Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414:57–60

    Article  ADS  Google Scholar 

  41. Brixner T, Gerber G (2003) Quantum control of gas-phase and liquid-phase femtochemistry. Chemphyschem 4:418–438

    Article  Google Scholar 

  42. Boutou V, Favre C, Hill SC, Pan YL, Chang RK, Wolf JP (2002) Backward enhanced emission from multiphoton processes in aerosols. Appl Phys B-Lasers Opt 75:145–152

    Article  ADS  Google Scholar 

  43. Favre C, Boutou V, Hill SC, Zimmer W, Krenz M, Lambrecht H, Yu J, Chang RK, Woeste L, Wolf JP (2002) White-light nanosource with directional emission. Phys Rev Lett 89:035002

    Article  ADS  Google Scholar 

  44. Hill SC, Boutou V, Yu J, Ramstein S, Wolf JP, Pan YL, Holler S, Chang RK (2000) Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities. Phys Rev Lett 85:54–57

    Article  ADS  Google Scholar 

  45. Pan YL, Hill SC, Wolf JP, Holler S, Chang RK, Bottiger JR (2002) Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan. Appl Opt 41: 2994–2999

    Article  ADS  Google Scholar 

  46. Kasparian J, Frejafon E, Rambaldi P, Yu J, Ritter P, Viscardi P, Wolf JP (1998) Characterization of urban aerosols using SEM-microscopy, X-ray analysis and lidar measurements. Atmos Env 32(17):2957–2967

    Article  Google Scholar 

  47. Iketaki Y, Watanabe T, Ishiuchi S, Sakai M, Omatsu T, Yamamoto K, Fujii M, Watanabe, T (2003) Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chem Phys Lett 372:773–778

    Article  ADS  Google Scholar 

  48. Courvoisier F, Bonacina L, Boutou V, Guyon L, Bonnet C, Thuillier B, Extermann J, Roth M, Rabitz H, Wolf JP (2008) Identification of biological microparticles using ultrafast depletion spectroscopy. Faraday Discuss 137:37–49

    Article  ADS  Google Scholar 

  49. Kasparian J, Rodriguez M, Mejean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andre YB, Mysyrowicz A, Sauerbrey R, Wolf JP, Woste L (2003) White-light filaments for atmospheric analysis. Science 301:61–64

    Article  ADS  Google Scholar 

  50. Mejean G, Kasparian J, Yu J, Frey S, Salmon E, Wolf JP (2004) Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system. Appl Phys B-Lasers Opt 78:535–537

    Article  ADS  Google Scholar 

  51. Dixon PB, Hahn DW (2004) Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy. Anal Chem 77:631–638

    Article  Google Scholar 

  52. Morel S, Leone N, Adam P, Amouroux J (2003) Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. Appl Opt 42:6184–6191

    Article  ADS  Google Scholar 

  53. Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 88:063901

    Article  ADS  Google Scholar 

  54. Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime. J Appl Phys 99:084701

    Article  ADS  Google Scholar 

  55. Baudelet M, Yu J, Bossu M, Jovelet J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 89:163903

    Article  ADS  Google Scholar 

  56. Li BQ, Rabitz H, Wolf JP (2005) Optimal dynamic discrimination of similar quantum systems with time series data. J Chem Phys 122:154103

    Article  ADS  Google Scholar 

  57. Roslund J, Roth M, Guyon L, Boutou V, Courvoisier F, Wolf J-P, Rabitz H (2011) Resolution of strongly competitive product channels with optimal dynamic discrimination: application to flavins. J Chem Phys 134:034511

    Article  ADS  Google Scholar 

  58. Rondi A, Extermann J, Bonacina L, Weber SM, Wolf JP (2009) Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet. Appl Phys B-Lasers Opt 96:757–761

    Article  ADS  Google Scholar 

  59. Weber S, Barthelemy M, Chatel B (2010) Direct shaping of tunable UV ultra-short pulses. Appl Phys B-Lasers Opt 98:323–326

    Article  ADS  Google Scholar 

  60. Kiselev D, Kraus PM, Bonacina L, Wörner HJ, Wolf JP (2012) Direct amplitude shaping of high harmonics in the extreme ultraviolet. Opt Express 20(23):25843–25849

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the collaborators at the Universities of Geneva and Lyon, in particular L. Bonacina, F. Courvoisier, L. Guyon, V. Boutou, E. Salmon, J. Yu, G. Mejean, J. Kasparian, C. Kasparian, A. Rondi, S. Afonina, J. Extermann, P. Bejot, S. Weber, D. Kiselev, and M. Moret, as well as H. Rabitz and his group at Princeton, particularly M. Roth and J. Roslund.

We also acknowledge the financial support of the Swiss National Science Foundation (contracts No. 2000021-111688 and No. 200020-124689), the Swiss NCCR MUST, and European FP7 project NAMDIATREAM (NMP-2009-4.0-3-246479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wolf, JP. (2015). Biosensing Instrumentation. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_4

Download citation

Publish with us

Policies and ethics