Skip to main content

An Approach in the Structural and Spectroscopic Analysis of Yb3+-Doped YAG Nano-ceramics by Conjugation of TEM-EDX and Optical Techniques

  • Conference paper
  • First Online:
Nano-Structures for Optics and Photonics

Abstract

We show our approach in the structural and spectroscopic analysis of Yb3+-doped YAG nano-ceramics prepared by the low temperature-high pressure sintering technique (LTHP) by conjugation of both TEM-EDX and optical techniques. Pressure sintering dependences of absorption, emission and decays are analyzed and interpreted. The sample pressurized at 8 GPa for sintering is characterized by the highest transparency and confirms the Y3Al5O12 garnet structure of the grains of ∼ 21 nm average size. Yb3+ ion distribution has been analyzed by both TEM-EDX evaluation in grains and grain boundaries and spectroscopy of Yb3+ pairs of small population from the cooperative luminescence phenomenon. EDX analysis at the TEM scale provides unambiguous results on a clear tendency of almost uniform Yb3+ distribution. An important new observation has been made at 4 K and room temperature with the \(^{2}F_{7/2} \rightarrow ^{2}F_{5/2}\) 0-phonon absorption line at 975.7 nm in addition of the 0-phonon line of the YAG structure of grains at 968 nm similar to that of bulky YAG single crystals. We have discussed the origin of this new 0-phonon line relaxing only by non-radiative transitions and conclude that this line might be assigned to Yb3+ distorted sites on the grain surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geusic JE, Marcos HM, Van Uitert LG (1964) Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett 4(10):182

    Article  ADS  Google Scholar 

  2. Ikesue A (2002) Polycrystalline Nd:YAG ceramics lasers. Opt Mat 19(1):183–187

    Article  Google Scholar 

  3. Simmonds MC, Huang YZ, Rodenburg JM (2003) Synthesis of nanosize powders and thin films of yb-doped yag by sol–gel methods. Chem Mat 15(18):3474–3480

    Article  ADS  Google Scholar 

  4. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc 78(4):1033–1040

    Article  ADS  Google Scholar 

  5. Ikesue A, Furusato I, Kamata K (1995) Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method. J Am Ceram Soc 78(1):225–228

    Article  Google Scholar 

  6. Ikesue A, Aung YL, Yoda T, Nakayama S, Kamimura T (2007) Fabrication and laser performance of polycrystal and single crystal nd:yag by advanced ceramic processing. Opt Mater 29(10):1289–1294. In: Proceedings of the 1st international laser ceramic symposium E-MRS fall meeting 2005 1st international laser ceramic symposium

    Google Scholar 

  7. Shoji I, Taira T, Ikesue A (2007) Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers. Opt Mat 29(10):1271–1276

    Article  ADS  Google Scholar 

  8. Lu J, Prabhu M, Xu J, Ueda K-i, Yagi H, Yanagitani T, Kaminskii AA (2000) Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser. Appl Phys Lett 77(23):3707

    Article  ADS  Google Scholar 

  9. Lu J, Song J, Prabhu M, Xu J, Ueda K-i, Yagi H, Yanagitani T, Kudryashov A (2000) High-power Nd:Y3Al5O12 ceramic laser. Jpn J Appl Phys 39(Part 2, No.10B):L1048–L1050

    Google Scholar 

  10. Lu J, Prabhu M, Song J, Li C, Xu J, Ueda K-i, Yagi H, Yanagitani T, Kaminskii AA (2001) Highly efficient Nd:Y3Al5O12 ceramic laser. Jpn J Appl Phys 40(Part 2, No.6A):L552–L554

    Google Scholar 

  11. Yagi H, Yanagitani T, Yoshida H, Nakatsuka M, Ueda K (2007) The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics. Opt Laser Technol 39(6):1295–1300

    Article  ADS  Google Scholar 

  12. Hreniak D, Gierlotka S, Łojkowski W, Strȩk W, Mazur P, Fedyk R (2005) High-pressure induced structural decomposition of RE-doped YAG nanoceramics. Solid State Phenom 106:17–22

    Article  Google Scholar 

  13. Fedyk R, Hreniak D, Łojkowski W, Strȩk W, Matysiak H, Grzanka E, Gierlotka S, Mazur P (2007) Method of preparation and structural properties of transparent YAG nanoceramics. Opt Mat 29(10):1252–1257

    Article  Google Scholar 

  14. Goldburt E, Kulkarni B, Bhargava R, Taylor J, Libera M (1997) Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor. J Lumin 72–74:190–192

    Article  Google Scholar 

  15. Pechini P (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697

    Google Scholar 

  16. Liu Y, Zhan J, Ren M, Tang K, Yu W, Qian Y (2001) Hydrothermal synthesis of square thin flake CdS by using surfactants and thiocarbohydrate. Mater Res Bull 36(7-8):1231–1236

    Article  Google Scholar 

  17. Sun L, Yao J, Liu C, Liao C, Yan C (2000) Rare earth activated nanosized oxide phosphors: synthesis and optical properties. J Lumin 87–89:447–450

    Article  Google Scholar 

  18. Bhargava R, Gallagher D, Racz J (1996) Method of manufacturing encapsulated doped particles. US Patent 5,525,377

    Google Scholar 

  19. Bowen P, Carry C (2002) From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol 128(2–3):248–255

    Article  Google Scholar 

  20. Kear B, Colaizzi J, Mayo W, Liao S-C (2001) On the processing of nanocrystalline and nanocomposite ceramics. Scripta Materialia 44(8-9):2065–2068

    Article  Google Scholar 

  21. Liao S, Mayo W, Pae K (1997) Theory of high pressure/low temperature sintering of bulk nanocrystalline TiO2. Acta Materialia 45(10):4027–4040

    Article  Google Scholar 

  22. Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C (2004) Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 430(7001):761–4

    Article  ADS  Google Scholar 

  23. Xie Z, Yang J, Huang X, Huang Y (1999) Microwave processing and properties of ceramics with different dielectric loss. J Eur Ceram Soc 19(3):381–387

    Article  Google Scholar 

  24. Panneerselvam M, Subanna GN, Rao KJ (2001) Translucent yttrium aluminum garnet: microwave-assisted route to synthesis and processing. J Mater Res 16:2773–2776

    Article  ADS  Google Scholar 

  25. Hokamoto K, Tanaka S, Fujita M, Itoh S, Meyers M, Chen H-C (1997) High temperature shock consolidation of hard ceramic powders. Phys B Condens Matter 239(1-2):1–5

    Article  ADS  Google Scholar 

  26. Kaszuw Ara W, Leonowicz M, Januszewski D, Mendoza G, Davies H, Paszula J (1998) Consolidation of magnetic powders by shock compression. J Mater Sci Mater Electron 9(1):17–23

    Article  Google Scholar 

  27. Groza JR (1999) Nanosintering. Nanostructured Mater 12(5-8):987–992

    Article  Google Scholar 

  28. Groza J, Zavaliangos A (2003) Nanostructured bulk solids by field activated sintering. Rev Adv Mater Sci 5(1):24–33

    Google Scholar 

  29. Liao S-C, Chen Y-J, Kear B, Mayo W (1998) High pressure/low temperature sintering of nanocrystalline alumina. Nanostructured Mater 10(6):1063–1079

    Article  Google Scholar 

  30. Liao S-C, Pae KD, Mayo WE (1995) High pressure and low temperature sintering of bulk nanocrystalline TiO2. Mater Sci Eng A 204(1-2):152–159

    Article  Google Scholar 

  31. Choudhury S, Gandhi AS, Jayaram V (2003) Bulk, dense, nanocrystalline yttrium aluminum garnet by consolidation of amorphous powders at low temperatures and high pressures. J Am Ceram Soc 86(2):247–251

    Article  Google Scholar 

  32. Boulon G (2008) Why so deep research on Yb3+-doped optical inorganic materials? J Alloy Compd 451(1-2):1–11

    Article  Google Scholar 

  33. Boulon G, Guyot Y, Yoshikawa A (2009) Optimization of the gain in Yb3+-doped cubic laser crystals of 99.99% purity. J Rare Earths 27(4):616–618

    Article  Google Scholar 

  34. Yoshikawa A, Boulon G, Laversenne L, Canibano H, Lebbou K, Collombet A, Guyot Y, Fukuda T (2003) Growth and spectroscopic analysis of Yb[sup 3+]-doped Y[sub 3]Al[sub 5]O[sub 12] fiber single crystals. J Appl Phys 94(9):5479

    Article  ADS  Google Scholar 

  35. Amami J, Hreniak D, Guyot Y, Zhao W, Boulon G (2010) Size-effect on concentration quenching in Yb3+-doped Y3Al5O12 nano-crystals. J Lumin 130(4):603–610

    Article  Google Scholar 

  36. Esposito L, Epicier T, Serantoni M, Piancastelli A, Alderighi D, Pirri A, Toci G, Vannini M, Anghel S, Boulon G (2012) Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications. J Eur Ceram Soc 32(10):2273–2281

    Article  Google Scholar 

  37. Epicier T, Boulon G, Zhao W, Guzik M, Jiang B, Ikesue A, Esposito L (2012) Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM. J Mater Chem 22(35):18221

    Article  Google Scholar 

  38. Zhao W, Hreniak D, Boulon G, Strek W, Brenier A, Yin M, Gluchowski P, Lukowiak A, Wiglusz R, Epicier T (2010) Spectroscopic properties of Yb3+-doped Y3Al5O12 nano-ceramics obtained under different sintering pressures. Radiat Meas 45(3-6):304–306

    Article  Google Scholar 

  39. Strek W, Marciniak L, Gluchowski P, Hreniak D (2013) Infrared laser stimulated broadband white emission of Yb3+:YAG nanoceramics. Opt Mat 35(11):2013–2017

    Article  Google Scholar 

  40. Zhao W, Mancini C, Amans D, Boulon G, Epicier T, Min Y, Yagi H, Yanagitani T, Yanagida T, Yoshikawa A (2010) Evidence of the inhomogeneous Ce 3+ distribution across grain boundaries in transparent polycrystalline Ce 3+ -doped (Gd,Y) 3 Al 5 O 12 garnet optical ceramics. Jpn J Appl Phys 49(2):022602

    Article  ADS  Google Scholar 

  41. Zhao W, Anghel S, Mancini C, Amans D, Boulon G, Epicier T, Shi Y, Feng X, Pan Y, Chani V, Yoshikawa A (2011) Ce3+ dopant segregation in Y3Al5O12 optical ceramics. Opt Mat 33(5):684–687

    Article  Google Scholar 

  42. Zhydachevskii Y, Syvorotka I, Vasylechko L, Sugak D, Borshchyshyn I, Luchechko A, Vakhula Y, Ubizskii S, Vakiv M, Suchocki A (2012) Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol–gel method. Opt Mat 34(12):1984–1989

    Article  Google Scholar 

  43. Ramirez MO, Wisdom J, Li H, Aung YL, Stitt J, Messing GL, Dierolf V, Liu Z, Ikesue A, Byer RL, Gopalan V (2008) Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials. Opt Express 16(9):5965

    Article  Google Scholar 

  44. Xu X, Zhao Z, Song P, Zhou G, Xu J, Deng P (2004) Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals. J Opt Soc Am B 21(3):543

    Article  ADS  Google Scholar 

  45. Chani VI, Yoshikawa A, Kuwano Y, Hasegawa K, Fukuda T (1999) Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique. J Cryst Growth 204(1-2):155–162

    Article  ADS  Google Scholar 

  46. Chani VI (1990) Iron garnet films for optical isolators in wavelength range 800–1300 nm. SPIE 1125:7. doi:10.1117/12.961362

    ADS  Google Scholar 

  47. Chani V (2004) Crystal-chemistry and fiber crystal growth of optical oxide materials. In: Fukuda T, Rudolph P, Uda S (eds) Fiber crystal growth from the melt. Advances in materials research 6. Springer, Berlin/Heidelberg, pp 129–184

    Google Scholar 

  48. Simura R, Yoshikawa A, Uda S (2009) The radial distribution of dopant (Cr, Nd, Yb, or Ce) in yttrium aluminum garnet (Y3Al5O12) single crystals grown by the micro-pulling-down method. J Cryst Growth 311(23-24):4763–4769

    Article  ADS  Google Scholar 

  49. Jiang B, Gong Z, Chen M, Li J, Liu W, Pan Y (2012) Comparative spectroscopic investigation of Yb3x Y3(1 − x )Al5O12 (x = 3, 5, 10 and 15%) transparent ceramics. Bull Russ Acad Sci Phys 76(6):643–647

    Article  Google Scholar 

  50. Boulon G, Guyot Y, Canibano H, Hraiech S, Yoshikawa A (2008) Characterization and comparison of Ybˆ3+-doped YA1O_3 perovskite crystals (Yb:YAP) with Ybˆ3+-doped Y_3Al_5O_12 garnet crystals (Yb:YAG) for laser application. J Opt Soc Am B 25(5):884

    Article  ADS  Google Scholar 

  51. Song Q, Li C-R, Li J-Y, Ding W-Y, Li S-F, Xu J, Deng X-L, Song C-L (2006) Photoluminescence properties of the Yb:Er co-doped Al2O3 thin film fabricated by microwave ECR plasma source enhanced RF magnetron sputtering. Opt Mat 28(12):1344–1349

    Article  Google Scholar 

  52. Jusza A, Anders K, Jastrzȩbska A, Polis P, Olszyna A, Kuś M, Kunicki A, Piramidowicz R (2011) Luminescent and structural properties of Yb3+-doped Al2O3 nanopowders. Opt Mat 33(10):1487–1491

    Article  Google Scholar 

  53. Krebs J, Happek U (2001) Yb3+ energy levels in α-Al2O3. J Lumin 94–95:65–68

    Article  Google Scholar 

  54. Guyot Y, Steimacher A, Belançon MP, Medina AN, Baesso ML, Lima SM, Andrade LHC, Brenier A, Jurdyc A-M, Boulon G (2011) Spectroscopic properties, concentration quenching, and laser investigations of Ybˆ3+-doped calcium aluminosilicate glasses. J Opt Soc Am B 28(10):2510

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research exchange program between the Polish Academy of Sciences (PAS) and CNRS (France) is acknowledged. Thanks are due to the Department of Chemistry of the University of Wroclaw for the access of low temperature absorption measurements and to the CLYM (Centre Lyonnais de Microscopie- http://clym.insa-lyon.fr) for the access to the JEOL 2010F 200 kV microscope

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Boulon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Boulon, G. et al. (2015). An Approach in the Structural and Spectroscopic Analysis of Yb3+-Doped YAG Nano-ceramics by Conjugation of TEM-EDX and Optical Techniques. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_13

Download citation

Publish with us

Policies and ethics