Skip to main content

Hyaluronic Acid Based Nanofibers for Wound Dressing and Drug Delivery Carriers

  • Chapter
  • First Online:
Intracellular Delivery II

Abstract

Hyaluronic acid (HA) as one of the chief components of the human extracellular matrix is proven to be beneficial in the wound healing process, because hyaluronic acid contributes significantly to cell proliferation and migration. Electrospun hyaluronic acid nanofibers should mimic the natural architecture of tissue and so it should provide a wound dressing similar to the natural tissue. Addition of antimicrobial agents in HA nanofibers should eliminate infections and prevent occurrence of undesired tissue adhesions when applied to wounds in abdominal cavity. Drug release profile may be changed by the structure of the nanofibrous material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMF:

N, N-Dimethylformamide

FDA:

Food and drug administration

HA:

Hyaluronic acid

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic) acid

PLLA:

Poly-l-Lactide

IPA:

Isopropyl alcohol

kDa:

Kilodalton

NaIO3 :

Sodium iodate

Na2HPO4 · 12H2O:

Disodium hydrogen phosphate dodecahydrate

KI:

Potassium iodide

NaH2PO4 · 2H2O:

Monosodium phosphate dihydrate

μl:

Microliter

min:

Minute

RH:

Relative humidity

cm:

Centimetre

nm:

Nanometre

Nm:

Newton metre

kV:

Kilovolt

mg:

Milligram

ml:

Millilitre

SEM:

Scanning electron microscopy

UV:

Ultraviolet

References

  • Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Article  CAS  Google Scholar 

  • Bölgen N, Vargel I, Korkusuz P et al (2007) In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B Appl Biomater 81(2):530–543

    Article  PubMed  Google Scholar 

  • Brenner EK, Schiffman JD, Thompson EA et al (2012) Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr Polym 87(1):926–929

    Article  CAS  Google Scholar 

  • Chang JJ, Lee YH, Wu MH et al (2012) Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydr Polym 88:1304–1312

    Article  CAS  Google Scholar 

  • Chokshi RJ, Zia H, Sandhu HK et al (2007) Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution-pros and cons. Drug Deliv 14:33–45

    Article  CAS  PubMed  Google Scholar 

  • Delaco PA, Stefanetti M, Pressato D et al (1998) A novel hyaluronan-based gel in laparoscopic adhesion prevention: preclinical evaluation in an animal model. Fertil Steril 69(2):318–323

    Article  Google Scholar 

  • Fischer RL, McCoy MG, Grant SA (2012) Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater Med 23:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503

    Article  CAS  Google Scholar 

  • Hooker GD, Taylor BM, Driman DK (1999) Prevention of adhesion formation with use of sodium hyaluronate–based bioresorbable membrane in a rat model of ventral hernia repair with polypropylene mesh—a randomized, controlled study. Surgery 125(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Ghosh K, Shu XZ et al (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792

    Article  CAS  PubMed  Google Scholar 

  • Johns DB, Keyport GM, Hoehler F et al (2001) Reduction of postsurgical adhesions with Intergel® adhesion prevention solution: a multicenter study of safety and efficacy after conservative gynecologic surgery. Fertil Steril 76(3):595–604

    Article  CAS  PubMed  Google Scholar 

  • Jun HW, Tambralli A, Blakeney BA (2011) Electrospinning apparatus, methods of use, and uncompressed fibrous mesh. World Intellectual Property Organisation WO2011130110 (A2), 20 Oct 2011

    Google Scholar 

  • Kenawy ER, Bowlin GL, Mansfield K et al (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Controlled Release 81:57–64

    Article  CAS  Google Scholar 

  • Kim TG, Chung H, Park TG (2008) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4(6):1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Knotkova K, Ruzickova J, Velebny V (2013) Homogeneity of additive content in the structure of electrospun nanofibers. In: 5th International conference Nanocon 2013, Brno, Oct 2013

    Google Scholar 

  • Kuo CK, Zamarripa N, Thomas AH (2010) Scaffolds for tissue engineering and regenerative medicine. World Intellectual Property Organisation WO2010040129 (A2), 8 Apr 2010

    Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  CAS  PubMed  Google Scholar 

  • Li JX, He AH, Han CC et al (2006) Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromol Rapid Comm 27(2):114–120

    Article  CAS  Google Scholar 

  • Liu YL, He J (2007) Bubble electrospinning for mass production of nanofibers. Int. J. Nonlinear Sci Numer Simul 8:393–396

    CAS  Google Scholar 

  • Liu Y, Ma G, Jun N et al (2010) Method for preparing pure hyaluronic acid nanofiber non-woven fabric. China Patent and Trademark Office CN101775704 (A), 14 Jul 2010

    Google Scholar 

  • Liu Y, Ma G, Fang D et al (2011) Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr Polym 83:1011–1015

    Article  CAS  Google Scholar 

  • Lukas D, Sarkar A, Pokorny P et al (2008) Self-organisation of jets in electrospinning from free liquid surface: a generalized approach. J Appl Phys 103(8):0843091–0843097

    Article  Google Scholar 

  • Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mat Res 46:60–72

    Article  CAS  Google Scholar 

  • Ma G, Jun N, Liu Y et al (2011) Preparation method of medicament-loaded biodegradable nano-fiber medical dressing. China Patent and Trademark Office CN102068339 (A), 25 May 2011

    Google Scholar 

  • Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  • Mincheva R, Paneva D, Manolova N et al (2005) Preparation of polyelectrolyte-containing nanofibers by electrospinning in the presence of a non-ionogenic water-soluble polymer. J Bioact Compat Polym 20:419–435

    Article  CAS  Google Scholar 

  • Mo X, Gao C, Liu W et al (2009) Preparation of bionic extracellular matrix hyaluronic acid and gelatin compound nanofiber membrane. China Patent and Trademark Office CN101581010 (A), 18 Nov 2009

    Google Scholar 

  • Okuda T, Tominaga K, Kidoaki S (2010) Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release 143(2):258–264

    Article  CAS  PubMed  Google Scholar 

  • Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42(2):215–220

    Article  CAS  Google Scholar 

  • Park W, Jeong L, Yoo D et al (2004) Effect of chitosan on morphology and conformation of silk fibroin nanofibers. Polymer 45:7151–7157

    Article  CAS  Google Scholar 

  • Patel S, Wong C, Kurpinski K (2010) Multilayer fibrous polymer scaffolds, methods of production and methods of use. World Intellectual Property Organisation WO2010042651 (A1), 15 Apr 2010

    Google Scholar 

  • Petrik S, Maly M (2009) Production nozzle-less electrospinning nanofiber technology. MRS Proc 1240:1

    Article  Google Scholar 

  • Petras D, Slobodian P, Klimmer D (2011) Comparison of productivity of different ways of electro spinning. In: 3rd International conference Nanocon 2011, Brno, Sept 2011

    Google Scholar 

  • Pokorny M, Velebny V (2011) Apparatus for production of two-dimensional or three-dimensional fibrous materials of microfibres and nanofibres. World Intellectual Property Organisation WO2011095141 (A1), 5 Feb 2010

    Google Scholar 

  • Pokorny M, Martincova L, Velebny V (2012a) Process for producing materials exhibiting anisotropic properties and composed of nanofibers or microfibers and apparatus for making the same. Czech Patent Office CZ303380 (B6), 27 Jun 2011

    Google Scholar 

  • Pokorny M (2012b) Product design—4SPIN laboratory device for nanotechnologies. Europe Patent Community design CD002037176, 4 May 2012

    Google Scholar 

  • Pokorny M, Rebicek J, Sukova L et al (2013a) Spinning nozzle for producing nano—and microfibrous materials composed of fibers with coaxial structure. Czech Patent Office CZ303780 (B6), 27 Jul 2012

    Google Scholar 

  • Pokorny M, Sukova L, Rebicek J et al (2013b) Combined spinning nozzle for producing nanofibrous and microfibrous materials. Czech Patent Office CZ304097 (B6), 19 Jan 2012

    Google Scholar 

  • Ruzickova J (2010) The release of incorporated substances from the nanofibrous structures and possibilities of application in medicine. Dissertation, Technical University of Liberec

    Google Scholar 

  • Ruzickova J, Pokorny M, Sukova L et al (2012a) Alternative approach of large scale nanofibers production. Paper presented at International Nanofiber Symposium/N3 M—Nanofibers for the 3rd millenium—Nanofibers 2012, Tokyo Institute of Technology, Tokyo, 4–5 June 2012

    Google Scholar 

  • Ruzickova J, Jouklova Z, Pravda M et al (2012b) Use of nanofibers for controlled release carriers. Paper presented at The 76th Prague Meeting on Macromolecules: polymers in Medicine, Institute of Macromolecular Chemistry, Prague, 1–5 July 2012

    Google Scholar 

  • Ruzickova J, Novak J, Pravda M et al (2013) Objemný nanovlákenný materiál na bázi kyseliny hyaluronové, jejích solí nebo jejich derivátů, způsob jejich přípravy, způsob jejich modifikace, modifikovaný nanovlákenný materiál, nanovlákenný útvar a jejich použití (Voluminous nanofibrous material based on hyaluronic acid, its salts or their derivatives, the way of their preparation, the way of their modification, modified nanofibrous material, nanofibrous formation and use thereof). Czech Patent Office PV2013-913, 22 Nov 2013

    Google Scholar 

  • Schmidt S, Friedl P (2010) Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339:83–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soo SH, Moo LY, In JS et al (2009) Nano fiber for tissue regeneration and fabrication method thereof. Korean Intellectual Property Office KR20090071993 (A), 2 July 2009

    Google Scholar 

  • Soo KI, Suhk KB, Oh KK et al (2013) Nanofiber having biocompatibility, method for producing the same and wound dressing. Japan Patent Office JP2013049927 (A), 26 Feb 2009

    Google Scholar 

  • Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17:2317–2329

    Article  CAS  Google Scholar 

  • Theron A, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030

    Article  CAS  Google Scholar 

  • Toshkova R, Manolova N, Gardeva E et al (2010) Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor. Int J Pharm 400(1–2):221–233

    Article  CAS  PubMed  Google Scholar 

  • Um IC, Fang D, Hsiao BS (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Uppal R, Ramaswamy GN, Arnold C et al (2011) Hyaluronic acid nanofiber wound dressing production, characterization, and in vivo behaviour. J Biomed Mater Res B Appl Biomater 97B(1):20–29

    Article  CAS  Google Scholar 

  • Verreck G, Chun I, Peeters J et al (2003) Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 20:810–817

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Um IC, Fang D et al (2005) Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 46:4853–4867

    Article  CAS  Google Scholar 

  • Wang H (2008) Innovative bottom-up cell assembly approach to three-dimensional tissue formation using nano-or micro-fibers. The United States Patent and Trademark Office US20080112998 (A1), 14 Jan 2006

    Google Scholar 

  • Wallwiener M, Brucker S, Hierlemann H et al (2006) Innovative barriers for peritoneal adhesion prevention: liquid or solid? a rat uterine horn model. Fertil Steril 86(4 Suppl):1266–1276

    Article  PubMed  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Wang CH (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Li J, He A (2009) Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes. Polymer 50:3762–3769

    Article  CAS  Google Scholar 

  • Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45(9):2977–2980

    Article  CAS  Google Scholar 

  • Zeng J, Xu X, Chen X et al (2003) Biodegradable electrospun fibers for drug delivery. J Controlled Release 92:227–231

    Article  CAS  Google Scholar 

  • Zeng J, Yang L, Liang Q et al (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Controlled Release 105:43–51

    Article  CAS  Google Scholar 

  • Zhang YZ, Wang X, Feng Y et al (2006) Coaxial electrospinning of fluo-rescein isothiocyanate—conjugated bovine serum albu-min)–encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Zong X, Kim K, Fang D et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412

    Article  CAS  Google Scholar 

  • Zong X, Li S, Chen E et al (2004) Prevention of post-surgery induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide) based membranes. Ann Surg 240:910–915

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This research is conducted under financial support provided by Technology Agency of the Czech Republic (project TA02011238: Novel wound dressings based on nanofibers and staple microfibers of hyaluronan and chitin/chitosan-glucan complex).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Růžičková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Růžičková, J. et al. (2014). Hyaluronic Acid Based Nanofibers for Wound Dressing and Drug Delivery Carriers. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_20

Download citation

Publish with us

Policies and ethics