Skip to main content

Developmental Anatomy of Galls in the Neotropics: Arthropods Stimuli Versus Host Plant Constraints

  • Chapter
  • First Online:

Abstract

As natural microlaboratories, galls are elegant models to study plant cell fates. Each gall morphotype is the product of repetitive patterns in cell division and differentiation, which culminate in a neoformed multicellular organ. Gall morphogenesis ruptures the patterns of cell polarization and expansion in relation to their host organs through cell redifferentiation, which results in changes in their functionality. As so, gall tissues guarantee nutrition, protection and a favorable microenvironment to the gall inducer. Sites of hyperplasia and hypertrophy are commonly reported for arthropod galls, and are commonly related to the feeding habits of each taxon. Nevertheless, there are some morphotypes in which the shapes are so peculiar that some other mechanisms must be involved, such as biochemical interactions, for instance. We revisit some Neotropical gall systems to check if the accumulation of phenolics is kept as one of the first cell responses to the presence of the inducer and if it is related to the changes in cell polarity and axiality. The final gall morphotypes require new spatial and developmental control of the host plant cells division and expansion, together with cell redifferentiation, but under the constraints imposed by the host plant organs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamson WG, Weiss AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton University Press, Princeton

    Google Scholar 

  • Abrahamson WG, McCrea KD, Whitwell AJ, Vernieri LA (1991) The role of phenolics in goldenrod ball gall resistance and formation. Biochem Syst Ecol 19:615–622

    Article  CAS  Google Scholar 

  • Albersheim P, Diarvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls: from chemistry to biology. Garland Science, New York

    Google Scholar 

  • Arduin M, Kraus JE, Venturelli M (1991) Estudo morfológico de galha achatada em folha de Struthanthus vulgaris Mart. (Loranthaceae). Rev Bras Bot 14:147–156

    Google Scholar 

  • Baluska F, Volkmann D, Hlavacka A, Mancuso S, Barlow PW (2006) Neurobiological view of plants and their body plan. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants, neuronal aspects of plant life. Springer, Berlin, pp 19–36

    Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Boudaoud A (2010) An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15:353–360

    Article  CAS  PubMed  Google Scholar 

  • Bronner R (1992) The role of nutritive cells in the nutrition of Cynipids and Cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 118–140

    Google Scholar 

  • Brown JW, Baixeiras J, Solórzano-Filho JA, Kraus JE (2004) Description and life history of an unusual fern-feeding tortricid moth (Lepidoptera: Tortricidae) from Brazil. Ann Entomol Soc Am 97:865–871

    Article  Google Scholar 

  • Campos PT (2011) Fenologia e variações sazonais no status hídrico e na termotolerância em espécies lenhosas em um fragmento de mata semidecídua em Belo Horizonte, MG. Master dissertation, Universidade Federal de Minas Gerais

    Google Scholar 

  • Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG, Brasil. Rev Bras Entomol 53:570–592

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Carvalho FM, Soares GLG, Isaias RMS (2005) Hymenoptera galls from Calliandra brevipes. Rev Bras Zoociên 7:362

    Google Scholar 

  • Castro AC, Oliveira DC, Moreira ASFP, Lemos Filho JP, Isaias RMS (2012) Source sink relationship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). S Afr J Bot 83:121–126

    Article  CAS  Google Scholar 

  • Cookson P, Kaino JW, Shipton CA, Fraser PD, Romer S, Schuch W, Bramley PM, Pyke KA (2003) Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217:896–903

    Article  CAS  PubMed  Google Scholar 

  • Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by Cynipinae (Hymenoptera): why and how. Am Midl Nat 110:225–234

    Article  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 07(6802):321–326

    Article  Google Scholar 

  • Del Río LA, Puppo A (2009) Reactive oxygen species in plant signaling. Springer, Berlin

    Book  Google Scholar 

  • Detoni ML, Vasconcelos EG, Scio E, Aguiar JA, Isaias RMS, Soares GLG (2010) Differential biochemical responses of Calliandra brevites (Fabaceae, Mimosoide) to galling behavior by Tanaostigmodes ringueleti and T. mecanga (Hymenoptera, Tanostigmatidae). Aust J Bot 58:280–285

    CAS  Google Scholar 

  • Detoni ML, Vasconcelos EG, Maia ACRG, Gusmão MAN, Isaias RMS, Soares GLG, Santos JC, Fernandes GW (2011a) Protein content and electrophoretic profile of insect galls on susceptible and resistant host plants of Bauhinia brevipes Vogel (Fabaceae). Aust J Bot 59:509–514

    Article  CAS  Google Scholar 

  • Detoni ML, Vasconcelos EG, Rust NM, Isaias RMS, Soares GLG (2011b) Seasonal variation of phenolic content in galled and non-galled tissues of Calliandra brevipes (Fabaceae: Mimosoidae). Acta Bot Bras 25:601–604

    Article  Google Scholar 

  • Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 8–33

    Google Scholar 

  • Ellis JR, Leech RM (1985) Cell size and chloroplast size in relation to chloroplast replication in light-grown wheat leaves. Planta 16:120–125

    Article  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100:95–99

    Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Fernandes GW, Cornelissen TG, Isaias RMS, Lara ACF (2000) Plants fight gall formation: hypersensitivity. Ciênc Cult 52:49–54

    Google Scholar 

  • Fernandes GW, Carneiro MAA, Isaias RMS (2012) Gall-inducing insects: from anatomy to biodiversity. In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC Press/Taylor & Francis, Boca Raton, pp 369–375

    Chapter  Google Scholar 

  • Formiga AT, Gonçalves SJMR, Soares GLG, Isaias RMS (2009) Relação entre o teor de fenóis totais e o ciclo das galhas de Cecidomyiidae em Aspidosperma spruceanum Müll. Arg. (Apocynaceae). Acta Bot Bras 23:93–99

    Article  Google Scholar 

  • Formiga AT, Soares GLG, Isaias RMS (2011) Responses of the host plant tissues to gall induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae). Am J Plant Sci 2:823–834

    Article  Google Scholar 

  • Formiga AT, Oliveira DC, Castro AC, Ferreira BG, Magalhães TA, Fernandes GW, Isaias RMS (2013) The role of pectic composition of cell walls in the determination of new shape-functional design in galls of Baccharis reticularia (Asteraceae). Protoplasma 250:899–908

    Article  CAS  PubMed  Google Scholar 

  • Foster AS (1936) Leaf differentiation in angiosperms. Bot Rev 2:349–372

    Article  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391

    Article  CAS  PubMed  Google Scholar 

  • Glover BJ (2000) Differentiation in plant epidermal cells. J Exp Bot 51:497–505

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves SJMR, Moreira GRP, Isaias RMS (2009) A unique seasonal cycle in a leaf gall-inducing insect: the formation of stem galls for dormancy. J Nat Hist 43:843–854

    Article  Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  Google Scholar 

  • Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol 61:113–119

    Article  Google Scholar 

  • Heldt HW, Piechulla B (2011) Plant biochemistry. Elsevier, London

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hori K (1992) Insect secretions and their effect on plant growth, with special references to Hemipteran. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 157–170

    Google Scholar 

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    Article  PubMed  Google Scholar 

  • Isaias RMS, Oliveira DC (2012) Gall phenotypes – product of plant cells defensive responses to the inducers attack. In: Mérillon JM, Ramawat KG (eds) Plant defence: biological control, progress in biological control, vol 12. Springer, Dordrecht, pp 273–290

    Chapter  Google Scholar 

  • Isaias RMS, Oliveira DC, Carneiro RGS (2011) Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Botany 89:581–592

    Article  Google Scholar 

  • Jayaraman P (1989) Histogenetic patterns and classification of the shoot-axis galls. Proc Indian Acad Plant Sci 99:391–403

    Google Scholar 

  • Koch KE (1996) Carbohydrate-modulate gene expression in plants. Annu Rev Plant Phys 47:509–540

    Article  CAS  Google Scholar 

  • Koch KE, Zeng Y (2002) Molecular approaches to altered C partitioning: gene for sucrose metabolism. J Am Soc Hortic Sci 127:474–483

    CAS  Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  CAS  PubMed  Google Scholar 

  • Kraus JE, Tanoe M (1999) Morpho-ontogenetic aspects of entomogenous galls in roots of Cattleya guttata (Orchidaceae). Lindleyana 14:204–213

    Google Scholar 

  • Kraus JE, Montenegro JE, Kim AJ (1993) Morphological studies on entomogenous stem galls of Microgramma squamulosa (Kauf.) Sota Polypodiaceae. Am Fern J 83:120–128

    Article  Google Scholar 

  • Kraus JE, Sugiura HC, Cutrupi S (1996) Morfologia e ontogenia em galhas entomógenas de Guarea macrophylla subsp. tuberculata (Meliaceae). Fitopatol Bras 21:349–356

    Google Scholar 

  • Kraus JE, Arduin M, Venturelli M (2002) Anatomy and ontogenesis of hymenopteran leaf galls of Struthanthus vulgaris Mart. (Loranthaceae). Rev Bras Bot 25:449–458

    Article  Google Scholar 

  • Lamppa GK, Elliot LV, Bendich AJ (1980) Changes in chloroplast number during pea leaf development. Planta 148:437–443

    Article  CAS  PubMed  Google Scholar 

  • Larew HG (1992) Fossil galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 50–59

    Google Scholar 

  • Lee MM, Schiefelbein J (2002) Cell pattern on the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leech RM, Pyke KA (1988) Chloroplast division in higher plants with particular reference to wheat. In: Boffey SA, Lloyd D (eds) The division and segregation of organelles. Cambridge University Press, Cambridge, pp 39–62

    Google Scholar 

  • Lev-Yadun S (2003) Stem cells in plants are differentiated too. Curr Opin Plant Biol 4:93–100

    Google Scholar 

  • Lloyd CW, Himmelspach R, Nick P, Wymer C (2000) Cortical microtubules form a dynamic mechanism that helps regulate the direction of plant growth. Gravit Space Biol Bull 13:59–65

    CAS  PubMed  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  CAS  PubMed  Google Scholar 

  • Mani MS (1964) Ecology of plant galls. Dr Junk Publishers, The Hague

    Book  Google Scholar 

  • Meyer J (1987) Plant galls and galls inducers. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Meyer J, Maresquelle HJ (1983) Anatomie des galles. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981

    Article  CAS  Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Aust J Bot 56:153–160

    Article  Google Scholar 

  • Moura MZD, Soares GLG, Isaias RMS (2009) Ontogênese da folha e das galhas induzidas por Aceria lantanae Cook (Acarina: Eriophyidae) em Lantana camara L. (Verbenaceae). Rev Bras Bot 32:271–282

    Article  Google Scholar 

  • Obroucheva NV (2008) Cell elongation as an inseparable component of growth in terrestrial plants. Russ J Dev Biol 39:13–24

    Article  Google Scholar 

  • Oliveira DC, Isaias RMS (2009) Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae). Rev Biol Trop 57:293–302

    PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS (2010a) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248

    Article  Google Scholar 

  • Oliveira DC, Isaias RMS (2010b) Cytological and histochemical gradients induced by a sucking insect in gall of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358

    Article  Google Scholar 

  • Oliveira DC, Christiano JCS, Soares GLG, Isaias RMS (2006) Structural and chemical defensive reactions of Lonchocarpus muehlbergianus Hassl. (Fabaceae) to Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae) galling stimuli. Rev Bras Bot 29:657–667

    Article  CAS  Google Scholar 

  • Oliveira DC, Drummond MM, Moreira ASFP, Soares GLG, Isaias RMS (2008) Potencialidades morfogênicas de Copaifera langsdorffii Desf. (Fabaceae): super-hospedeira de herbívoros galhadores. Rev Biol Neotrop 5:31–39

    Google Scholar 

  • Oliveira DC, Magalhães TA, Carneiro RGS, Alivim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242:81–93

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS, Moreira ASFP, Magalhães TA, Lemos-Filho JP (2011a) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? Plant Sci 180:489–495

    Article  PubMed  Google Scholar 

  • Oliveira DC, Carneiro RGS, Magalhães TA, Isaias RMS (2011b) Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae) Cecidomyiidae gall systems. Protoplasma 248:829–837

    Article  CAS  PubMed  Google Scholar 

  • Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24

    Google Scholar 

  • Pyke KA (1999) Plastid division and development. Plant Cell 11:549–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyke KA, Leech RM (1992) Nuclear mutations radically alter chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol 99:1005–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raman A (2007) Insect-induced plant galls of India: unresolved questions. Curr Sci 92:748–757

    Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induce cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redfern M, Askew RR (1992) Plant galls, Naturalist’s handbook series 17. Richmond Publishing, Slough

    Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86

    Google Scholar 

  • Sá CEM, Silveira FAO, Santos JC, Isaias RMS, Fernandes GW (2009) Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Rev Bras Bot 32:319–327

    Article  Google Scholar 

  • Schönrogge K, Harper LJ, Lichtenstein CP (2000) The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant Cell Environ 23:215–222

    Article  Google Scholar 

  • Smith LG (2003) Cytoskeletal control of plant cell shape: getting the fine points. Curr Opin Plant Biol 6:63–73

    Article  PubMed  Google Scholar 

  • Smith AM, Coupland G, Dolan L, Harberd N, Jones J, Martin C, Sablowski R, Amey A (2010) Plant biology. Garland Science/Taylor & Francis, New York, 664 p

    Google Scholar 

  • Souza SCPM, Kraus JE, Isaias RMS, Neves LJ (2000) Anatomical and ultrastructural aspects of leaf galls in Ficus microcarpa L. F. (Moraceae) induced by Gynaikothrips ficorum Marchal (Thysanoptera). Acta Bot Bras 14:57–69

    Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer, Sunderland

    Google Scholar 

  • Vieira ACM, Kraus JE (2007) Biologia e estrutura da galha do pedicelo de Byrsonima sericea DC. (Malpighiaceae) induzida por Lepidoptera. Rev Bras Biociênc 5:402–404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy Mary dos Santos Isaias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

dos Santos Isaias, R.M., de Oliveira, D.C., da Silva Carneiro, R.G., Kraus, J.E. (2014). Developmental Anatomy of Galls in the Neotropics: Arthropods Stimuli Versus Host Plant Constraints. In: Fernandes, G., Santos, J. (eds) Neotropical Insect Galls. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8783-3_2

Download citation

Publish with us

Policies and ethics