Skip to main content

Roles of Phytohormones in Morphological and Anatomical Responses of Plants to Flooding Stress

  • Chapter
  • First Online:
Plant Hormones under Challenging Environmental Factors

Abstract

Waterlogging and submergence stress, which are caused by flooding, often produce injurious effects on plant growth. Plants have some adaptive mechanisms, such as aerenchyma formation, adventitious root formation, and control of shoot elongation, to avoid oxygen deficiency under flooded conditions. Ethylene is involved in most of the morphological and anatomical responses of plants to flooding; thus, this phytohormone is a key factor for plant growth control under flooded conditions. The processes of some morphological responses are controlled by different interactions between ethylene and other phytohormones [such as auxin, gibberellin (GA), and abscisic acid (ABA)]. Ethylene and auxin act synergistically in the control of adventitious root formation. On the other hand, ethylene acts synergistically with GA and antagonistically with ABA in the control of adventitious root formation and submergence-stimulated shoot elongation. Here, we summarize how the morphological and anatomical responses of plants to flooding stress are controlled by ethylene or the interplay between ethylene and other phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, Pérez-Alfocea F, Sánchez-Bravo J, Pérez-Pérez JM, Acosta M. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiol Plant. 2014;150:446–62.

    Article  PubMed  Google Scholar 

  • Armstrong W. Aeration in higher plants. Adv Bot Res. 1980;7:225–332.

    Article  Google Scholar 

  • Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Angeles-Shim RB, Kitano H, Nagai K, Ashikari M. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 2014;37:2313–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice. 2010;3:138–47.

    Article  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313–39.

    Article  CAS  PubMed  Google Scholar 

  • Benschop JJ, Bou J, Peeters AJM, Wagemaker N, Gühl K, Ward D, Hedden P, Moritz T, Voesenek LACJ. Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin1. Plant Physiol. 2006;141:1644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benschop JJ, Jackson MB, Gühl K, Vreeburg RAM, Croker SJ, Peeters AJM, Voesenek LACJ. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J. 2005;44:756–68.

    Article  CAS  PubMed  Google Scholar 

  • Bouranis DL, Chorianopoulou SN, Kollias C, Maniou P, Protonotarios VE, Siyianis VF, Hawkesford MJ. Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize. Ann Bot. 2006;97:695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouranis DL, Chorianopoulou SN, Siyianis VF, Protonotarios VE, Hawkesford MJ. Aerenchyma formation in roots of maize during sulphate starvation. Planta. 2003;217:382–91.

    Article  CAS  PubMed  Google Scholar 

  • Catling D. Rice in deep water. London: MacMillan Press; 1992.

    Book  Google Scholar 

  • Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ. Root formation in ethylene-insensitive plants. Plant Physiol. 1999;121:53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmer TD. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26:17–36.

    Article  CAS  Google Scholar 

  • Colmer TD, Cox MCH, Voesenek LACJ. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 2006;170:767–78.

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ. Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol. 2009;36:665–81.

    Article  Google Scholar 

  • Cookson C, Osborne DJ. The stimulation of cell extension by ethylene and auxin in aquatic plants. Planta. 1978;144:39–47.

    Article  CAS  PubMed  Google Scholar 

  • Cox MCH, Benschop JJ, Vreeburg RAM, Wagemaker CAM, Moritz T, Peeters AJM, Voesenek LACJ. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol. 2004;136:2948–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox MCH, Peeters AJM, Voesenek LACJ. The stimulating effects of ethylene and auxin on petiole elongation and on hyponastic curvature are independent processes in submerged Rumex palustris. Plant Cell Environ. 2006;29:282–90.

    Article  CAS  PubMed  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002;59:627–47.

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, He CJ, Morgan PW. Programmed cell death and aerenchyma formation in roots. Trend Plant Sci. 2000;5:123–7.

    Article  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard S. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta. 1979;147:83–8.

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta. 1981;153:217–24.

    Article  CAS  PubMed  Google Scholar 

  • Evans DE. Aerenchyma formation. New Phytol. 2003;161:35–49.

    Article  Google Scholar 

  • Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci. 2008;105:16814–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell. 2006;18:2021–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori Y, Miura K, Asano K, Yamamoto E, Kitano H, Matsuoka M, Ashikari M. A major QTL confers rapid internode elongation in response to water rise in deepwater rice. Breed Sci. 2007;57:305–14.

    Article  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460:1026–30.

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Mori H, Kitano H, Mastuoka M, Ashikari M. Mapping of three QTLs that regulate internode elongation in deepwater rice. Breed Sci. 2008;58:39–46.

    Article  CAS  Google Scholar 

  • He CJ, Finlayson SA, Drew MC, Jordan WR, Morgan PW. Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol. 1996;112:1679–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 1992;99:1156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton RF, Samarakoon AB. Petiole growth in the celery-leaved crowfoot (Ranunculus sceleratus L.): effects of auxin transport inhibitors. Aquatic Bot. 1982;13:97–104.

    Article  CAS  Google Scholar 

  • Jackson MB, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1999;1:274–87.

    Article  CAS  Google Scholar 

  • Jackson MB, Fenning TM, Drew MC, Saker LR. Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta. 1985;165:486–92.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Ram PC. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot. 2003;91:227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justin SHFW, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 1987;106:465–95.

    Article  Google Scholar 

  • Justin SHFW, Armstrong W. A reassessment of the influence of NAA on aerenchyma formation in maize roots. New Phytol. 1991;117:607–18.

    Article  CAS  Google Scholar 

  • Kende H, van der Knaap E, Cho HT. Deepwater rice: a model plant to study stem elongation. Plant Physiol. 1998;118:1105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konings H, de Wolf A. Promotion and inhibition by plant growth regulators of aerenchyma formation in seeding roots of Zea mays. Physiol Plant. 1984;60:309–14.

    Article  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: Key enzymes in ABA catabolism. EMBO J. 2004;23:1647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorbiecke R, Sauter M. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 1999;119:21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone M, Ridge I. Ethylene-induced growth and proton excretion in the aquatic plant Nymphoides peltata. Planta. 1983;157:71–3.

    Article  CAS  PubMed  Google Scholar 

  • McDonald MP, Visser EJW. A study of the interaction between auxin and ethylene in wild type and transgenic ethylene-insensitive tobacco during adventitious root formation induced by stagnant root zone conditions. Plant Biol. 2003;5:550–6.

    Article  CAS  Google Scholar 

  • Mergemann H, Sauter M. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 2000;124:609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot. 2011;107:1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips I. Root-shoot hormone relations. II. Changes in endogenous auxin concentrations produced by flooding of the root system in Helianthus annuus. Ann Bot. 1964;28:37–45.

    Google Scholar 

  • Pierik R, van Aken JM, Voesenek LACJ. Is elongation-induced leaf emergence beneficial for submerged Rumex species? Ann Bot. 2009;103:353–7.

    Article  CAS  PubMed  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol. 2011;190:351–68.

    Article  CAS  PubMed  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol. 2007;48:287–98.

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Voesenek LACJ. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 2015;169:3–12.

    Article  CAS  PubMed  Google Scholar 

  • Sauter M. Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften. 2000;87:289–303.

    Article  CAS  PubMed  Google Scholar 

  • Seago JL Jr, Marsh LC, Stevens KJ, Soukup A, Votrubova O, Enstone DE. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann Bot. 2005;96:565–79.

    Article  PubMed  Google Scholar 

  • Setter TL, Laureles EV. The beneficial effect of reduced elongation growth on submergence tolerance of rice. J Exp Bot. 1996;47:1551–9.

    Article  CAS  Google Scholar 

  • Setter TL, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil. 2003;253:1–34.

    Article  CAS  Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 2008;175:52–8.

    Article  CAS  Google Scholar 

  • Singh HP, Singh BB, Ram PC. Submergence tolerance of rainfed lowland rice: search for physiological marker traits. J Plant Physiol. 2001;158:883–9.

    Article  CAS  Google Scholar 

  • Steffens B, Geske T, Sauter M. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol. 2011;190:369–78.

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Kovalev A, Gorb SN, Sauter M. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. Plant Cell. 2012;24:3296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Sauter M. Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol. 2005;139:713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Sauter M. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell. 2009;21:184–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Wang J, Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta. 2006;223:604–12.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14:691–9.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamauchi T, Colmer TD, Nakazono M. Aerenchyma formation in plants. In: Dongen JT, Licausi F, editors. Low-oxygen stress in plants. Springer-Verlag, Wien: Plant Cell Monographs; 2014. p. 247–65.

    Chapter  Google Scholar 

  • Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Ann Bot. 2015;115:879–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol. 2001;125:955–68.

    Article  Google Scholar 

  • van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RAM, Pedersen O, Visser EJW, Larive CK, Pierik R, Bailey-Serres J, Voesenek LACJ, Sasidharan R. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell. 2013;25:4691–707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verstraeten I, Beeckman T, Geelen D. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis. Methods Mol Biol. 2013;959:159–75.

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci. 2014;29:495.

    Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010;63:551–62.

    Article  CAS  PubMed  Google Scholar 

  • Visser EJW, Bögemann GM. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol. 2006;171:305–14.

    Article  CAS  PubMed  Google Scholar 

  • Visser EJW, Bögemann GM, Blom CWPM, Voesenek LACJ. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J Exp Bot. 1996a;47:403–10.

    Article  CAS  Google Scholar 

  • Visser EJW, Cohen JD, Barendse GWM, Blom CWPM, Voesenek LACJ. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 1996b;112:1687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visser EJW, Heijink CJ, van Hout KJGM, Voesenek LACJ, Barendse GWM, Blom CWPM. Regulatory role of auxin in adventitious root formation in two species of Rumex, differing in their sensitivity to waterlogging. Physiol Plant. 1995;93:116–22.

    Article  CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ. Acclimation to soil flooding – sensing and signal-transduction. Plant Soil. 2004;254:197–214.

    Google Scholar 

  • Voesenek LACJ, Bailey-Serres J. Flood adaptive traits and processes: an overview. New Phytol. 2015;206:57–73.

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Rijnders JHGM, Peeters AJM, van de Steeg HM, De Kroon H. Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology. 2004;85:16–27.

    Article  Google Scholar 

  • Walters J, Osborne DJ. Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Regnellidium diphyllum. Planta. 1979;146:309–17.

    Article  CAS  PubMed  Google Scholar 

  • Wample RL, Reid DM. The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (Helianthus annuus). Physiol Plant. 1979;45:219–26.

    Article  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 2004;135:1447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 2006;442:705–8.

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot. 2009;60:339–49.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto F, Kozlowski TT. Regulation by auxin and ethylene of responses of Acer negundo seedlings to flooding of the soil. Envir Exp Bot. 1987;27:329–40.

    Article  CAS  Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav. 2011;6:759–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T. Aerenchyma formation in crop species: a review. Field Crops Res. 2013;152:8–16.

    Article  Google Scholar 

  • Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M. Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots. Plant Physiol. 2015;169:180–93.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedling to oxygen-deficient conditions. J Exp Bot. 2014;65:261–73.

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol. 1984;35:155–89.

    Article  CAS  Google Scholar 

  • Zimmerman PW, Hitchcock AE. Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases. Contrib Boyce Thompson Inst. 1933;5:351–69.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Takaki Yamauchi (Nagoya University) for critically reading this article and stimulating discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Nakazono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hu, Z., Qi, X., Zhang, M., Chen, X., Nakazono, M. (2016). Roles of Phytohormones in Morphological and Anatomical Responses of Plants to Flooding Stress. In: Ahammed, G., Yu, JQ. (eds) Plant Hormones under Challenging Environmental Factors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2_5

Download citation

Publish with us

Policies and ethics