Skip to main content

Diagnostic Optical Imaging Technology and Its Principles

  • Chapter
  • 1531 Accesses

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 5))

Abstract

Analysis of tissue structures is important for investigating pathological changes and diagnosing neural diseases. Recent advances in ophthalmology regarding the diagnosis of neurosensory retinal diseases have introduced optical coherence tomography (OCT) as a near-infrared imaging modality to provide noninvasive and real-time imaging and sensing with ultrahigh resolution for imaging subsurface cross sections of the human retina. This chapter gives a brief overview and the basic principles of this emerging optical imaging modality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boppart SA, Bouma BE, Pitris C, Tearney GJ, Fujimoto JG, Brezinski ME (1997) Forward-imaging instrumentations for optical coherence tomography. Opt Lett 22:1618–1620

    Article  CAS  PubMed  Google Scholar 

  2. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler PS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microsctructure optical fiber. Opt Lett 26:608–610

    Article  CAS  PubMed  Google Scholar 

  3. Teramura Y, Suekuni M, Kannari F (2000) Two-dimensional optical coherence tomography using spectral domain interferometry. J Opt A 2:21–26

    Article  Google Scholar 

  4. Hoeling B, Fernandez A, Haskell R, Huang E, Myers W, Petersen D, Ungersma S, Wang R, Williams M, Fraser S (2000) An optical coherence microscope for 3-dimensional imaging in developmental biology. Opt Express 6:136–146

    Article  CAS  PubMed  Google Scholar 

  5. Xi C, Marks D, Schlachter S, Luo W, Boppart SA (2006) High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. J Biomed Opt 11:034001

    Article  Google Scholar 

  6. Cheng Y, Larin KV (2007) In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography. IEEE Photon Technol Lett 19:1634–1636

    Article  Google Scholar 

  7. Fujimoto JG, De Silvestri S, Ippen EP, Puliafito CA, Margolis R, Oseroff A (1986) Femtosecond optical ranging in biological systems. Opt Lett 11:150–152

    Article  CAS  PubMed  Google Scholar 

  8. Fercher AF, Mengedoht K, Werner W (1988) Eye length measurement by interferometry with partially coherent light. Opt Lett 13:186–188

    Article  CAS  PubMed  Google Scholar 

  9. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (2009) Intracoronary optical coherence tomography: a comprehensive review. J Am Coll Cardiol Intv 2:1035–1046

    Article  Google Scholar 

  10. Tasi T-H, Fujimoto JG, Mashimo H (2014) Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics 4:57–93

    Article  Google Scholar 

  11. Kharchenko S, Adamowicz J, Wojtkowski M, Drewa T (2013) Optical coherence tomography diagnostics for onco-urology. Review of clinical perspectives. Cen Eur J Urol 66:136–141

    Google Scholar 

  12. Babalola O, Mamalis A, Lev-Tov H, Jagdeo J (2014) Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis. Arch Dermatol Res 306:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kang JU, Huang Y, Zhang K, Ibrahim Z, Cha J, Lee WPA, Brandacher G, Gehlbach PL (2012) Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries. J Biomed Opt 17:081403

    Article  PubMed Central  PubMed  Google Scholar 

  14. Pedrotti FL, Pedtrotti LS (1993) Introduction to optics, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  15. Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J Quantum Electron 5:1205–1215

    Article  CAS  Google Scholar 

  16. Jacues SL et al (1987) Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci I:309–334

    Google Scholar 

  17. Haskell RC, Svaasand LO, Tsay T-T, Feng T-C, McAdams MS, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am 11:2727–2741

    Article  CAS  Google Scholar 

  18. Yoo KM, Alfano RR (1990) Time-resolved coherent and incoherent components of forward light scattering in random media. Opt Lett 15:320–322

    Article  CAS  PubMed  Google Scholar 

  19. Farsiu S, Christofferson J, Eriksson B, Milanfar P, Friedlander B, Shakouri A, Nowak R (2007) Statistical detection and imaging of objects hidden in turbid media using ballistic photons. Appl Opt 46:5805–5822

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (2013R1A1A2062448). The author acknowledges the partial use of contents and texts from the author’s doctoral dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Ho Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Han, JH. (2015). Diagnostic Optical Imaging Technology and Its Principles. In: Lee, SW., Bülthoff, H., Müller, KR. (eds) Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7239-6_12

Download citation

Publish with us

Policies and ethics