Skip to main content

Substructural Logics and Residuated Lattices — an Introduction

  • Chapter

Part of the book series: Trends in Logic ((TREN,volume 21))

Abstract

This is an introductory survey of substructural logics and of residuated lattices which are algebraic structures for substructural logics. Our survey starts from sequent systems for basic substructural logics and develops the proof theory of them. Then, residuated lattices are introduced as algebraic structures for substructural logics, and some recent developments of their algebraic study are presented. Based on these facts, we conclude at the end that substructural logics are logics of residuated structures, and in this way explain why sequent systems are suitable for formalizing substructural logics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A. R. and N.D. Belnap JR., Entailment: The Logic of Relevance and Necessity I, Princeton University Press, 1975.

    Google Scholar 

  2. Anderson, A.R. and N. D. Belnap JR., and J. M.Dunn, Entailment: The Logic of Relevance and Necessity II, Princeton University Press, 1992.

    Google Scholar 

  3. Balbes, R. and Ph. Dwinger, Distributive Lattices, University of Missouri Press, 1974.

    Google Scholar 

  4. Battilotti, G. and G. Sambin, ‘Basic logic and the cube of its extensions’, in: A. Cantini, E. Casari and P. Minari (eds.): Logic and Foundations of Mathematics, Kluwer Academic Publishers, pp. 165–186, 1999.

    Google Scholar 

  5. Belardinelli, F., P. Jipsen and H. Ono, ‘An algebraic aspects of cut elimination theorem’, draft, 2003.

    Google Scholar 

  6. Blox, W. J. and C. J.Van Alten, ‘The finite embeddability property for residuated lattices, pocrims and BCK-algebras’, Algebra Universalis 48: 253–271, 2002.

    Article  Google Scholar 

  7. Cignoli, R., F. Esteva, L. Godo and A. Torrens, ‘Basic Fuzzy Logic is the logic of continuous t-norms, and their residua’, Soft. Computing 4: 106–112, 2000.

    Article  Google Scholar 

  8. Cignoli, R., F. Esteva, L. Godo and A. Torrens, ‘Basic Fuzzy Logic is the logic of continuous t-norms, and their residua’, Soft. Computing 4: 106–112, 2000.

    Article  Google Scholar 

  9. Cignoli, R., D. Mundiciand L M. L. D’ottaviano, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, 2000.

    Google Scholar 

  10. Dosen, K. and P. Schroeder-Heister eds., Substructural Logics, Oxford University Press, 1993.

    Google Scholar 

  11. Esteva, Fand L. Godo, ‘Monoidal t-norm based logic: towards a logic for left-continuous t-norms’, Fuzzy Sets and Systems 124: 271–288, 2001.

    Article  Google Scholar 

  12. Gentzen, G., ‘Untersuchungen fiber das logische Schliessen’, Mathematische Zeitschrift, 39: 176–210, 405–413, 1934.

    Google Scholar 

  13. Girard, J.-Y., ‘Linear logic’, Theoretical Computer Science 50: 1–102, 1987.

    Article  Google Scholar 

  14. Grisin, V., ‘Predicate and set-theoretic calculi based on logic without contraction, Math. USSR Izvestiya 18: 41–59, 1982.

    Article  Google Scholar 

  15. Hâjek, P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, 1998.

    Google Scholar 

  16. Höhle, U., ‘Commutative residuated monoids’, in: U. Höhle and P. Klement (eds.): Non-classical Logics and Their Applications to Fuzzy Subsets, Kluwer Academic Publishers, pp. 53–106, 1995.

    Google Scholar 

  17. Jenei, S. and F. Montagna, ‘A proof of standard completeness for Esteva and Godo’s Logic MTL’, Studia Logica 70: 183–192, 2002.

    Article  Google Scholar 

  18. Jipsen, J., T. Kowalski and H. Ono, Residuated Lattices: An algebraic glimpse at substructural logics,in preparation.

    Google Scholar 

  19. Jipsen, J. and C. Tsinakis, ‘A survey of residuated lattices’, in: J. Martinez (ed.): Ordered Algebraic Structures, Kluwer Academic Publishers, pp. 19–56, 2002.

    Google Scholar 

  20. Kiriyama, E. and H. Ono, ‘The contraction rule and decision problems for logics without structural rules’, Studia Logica 50: 299–319, 1991.

    Article  Google Scholar 

  21. Komori, Y., ‘The class of BCC—algebras is not a variety’, Mathematica Japonica, 29: 391–394, 1984.

    Google Scholar 

  22. Kowalski, T. and H. Ono, Residuated Lattices: An algebraic glimpse at logics without contraction, monograph, March, 2001.

    Google Scholar 

  23. Kripke, S. A., ‘The problem of entailment (abstract)’, The Journal of Symbolic Logic 24: 324, 1959.

    Google Scholar 

  24. Krull, W., ‘Axiomatische Begründung der allgemeinen Idealtheorie’, Sitzungsberichte der physikalisch medizinischen Societiit der Erlangen 56: 47–63, 1924.

    Google Scholar 

  25. Lafont, Y., ‘The finite model property for various fragments of linear logic’, The Journal of Symbolic Logic 62: 1202–1208, 1997.

    Article  Google Scholar 

  26. Lambek, J., ‘The mathematics of sentence structure’, American Mathematical Monthly 12: 166–178, 1958.

    Google Scholar 

  27. Meyer, R. K., Topics in modal and many-valued logic, Ph.D. dissertation, University of Pittsburgh, 1966.

    Google Scholar 

  28. Meyer, R. K. and H. Ono, ‘The finite model property for BCK and BCIW’, Studia Logica 53: 107–118, 1994.

    Article  Google Scholar 

  29. Okada, M. and K. `L’erui, ‘The finite model property for various Fragments of intuitionistic linear logic’, The Journal of Symbolic Logic 64: 790–802, 1999.

    Article  Google Scholar 

  30. Ono, H., ‘Structural rules and a logical hierarchy’, in: P.P. Petokov (ed.): Mathematical Logic, Proceedings of the Summer School and the Conference ‘Heyting ’88’, Plenum Press, pp. 95–104, 1990.

    Google Scholar 

  31. Ono, H., ‘Semantics for substructural logics’, in: K. Dosen and P. Schroeder-Heister (eds.): Substructural Logics, Oxford University Press, pp. 259–291, 1993.

    Google Scholar 

  32. Ono, H., ‘Decidability and the finite model property of substructural logics’, in: J. Ginzburg et.al (eds.): Tbilisi Symposium on Logic, Language and Computation: Selected Papers, Studies in Logic, Language and Information, CSLI, pp. 263–274, 1998.

    Google Scholar 

  33. Ono, H., ‘Proof-theoretic methods for nonclassical logic an introduction’, in: M. Takahashi, M. Okada and M. Dezani-Ciancaglini, (eds.): Theories of Types and Proofs, MSJ Memoirs vol.2, Mathematical Society of Japan, pp. 207–254, 1998.

    Google Scholar 

  34. Ono, H., ‘Closure operators and complete embeddings of residuated lattices’, to appear inStudia Logica.

    Google Scholar 

  35. Ono, H., ‘Completions of algebras and completeness of modal and substructural logics’, to appear in Advances in Modal Logic vol.4.

    Google Scholar 

  36. Ono, H., ‘Logics without contraction rule and residuated lattices I’, in E. Mares edited, XXX, CSLI, 2003.

    Google Scholar 

  37. Ono, H. and Y. Komori, ‘Logics without the contraction rule’, The Journal of Symbolic Logic 50: 169–201, 1985.

    Article  Google Scholar 

  38. Paoli, F., Substructural Logics: A Primer, Trends in Logic vol.13 — Studia Logica Library, Kluwer Academic Publishers, 2002.

    Google Scholar 

  39. Restall, G., An Introduction to Substructural Logics, Routledge, 2000.

    Google Scholar 

  40. Rosenthal, K. f., Quantales and Their Applications, Pitman Research Notes in Mathematics 234, Longman, 1990.

    Google Scholar 

  41. Troelstra, A.S., Lectures on Linear Logic, CSLI Lecture Notes No.29, Stanford University, 1992.

    Google Scholar 

  42. Urquhart, A., ‘The undecidability of entailment and relevant implication’, The Journal of Symbolic Logic 49: 1059–1073, 1984.

    Article  Google Scholar 

  43. Wang, H., A Survey of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, North-Holland, 1963.

    Google Scholar 

  44. Ward, M. and R. P. Dilworth, ‘Residuated lattices’, Transactions of the American Mathematical Society 45: 335–354, 1939.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ono, H. (2003). Substructural Logics and Residuated Lattices — an Introduction. In: Hendricks, V.F., Malinowski, J. (eds) Trends in Logic. Trends in Logic, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3598-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3598-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6414-1

  • Online ISBN: 978-94-017-3598-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics