Skip to main content

Molecular Markers and Abiotic Stresses

Following the Signal Maze to Protective Metabolism in Abiotic Stress — Search for Opportune Shortcuts to Improve Resistance

  • Chapter
Molecular Techniques in Crop Improvement

Abstract

In most moderate climates plants encounter a variety of abiotic stress conditions during the growing season which significantly impact their productivity. For purposes of this review abiotic stress will be defined as climatic and soil variation in osmotic environment (salt, drought and cold), daily or seasonal temperature variation (cold and heat) and oxidative stress exacerbating the other stress conditions especially in presence of high light intensity. These stress conditions can be of short duration, such as temperature variations during the day and night or the drying of fields. The stress can also be prolonged as during seasonal changes of heat and cold, while drought and salinity conditions are brought on by lack of sufficient water and poor irrigation practices. The goal in crop improvement is to extend plant tolerance to these stress conditions for survival and continued productivity under the adverse growing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., and Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868.

    PubMed  CAS  Google Scholar 

  2. Alia, Hayashi, H., Sakamoto, A., and Murata, N. (1998). Enhancement of the tolerance of Arabidopsis to high temperatures by gnetic engineering of the synthesis of glycinebetaine. Plant J. 16, 155–161.

    CAS  Google Scholar 

  3. Alia, Kondo, Y.,Sakamoto, A., Nonaka, S., Hayashi, H., Saradhi, P. P., Chen, T. H. H., and Murata, N. (1999). Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. PlantMol. Biol. 40, 279–288.

    CAS  Google Scholar 

  4. Allen, R. D. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107, 1049–1054.

    PubMed  CAS  Google Scholar 

  5. Apse, M. P., Aharon, G. S., Snedden, W. A., and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na’/H’ antiport in Arabidopsis. Science 285, 1256–1258.

    CAS  Google Scholar 

  6. Arisi, A.-C. M., Comic, G., Jouanin, L., and Foyer, C. H. (1998). Overexpression of iron superoxide dismutase in transformed poplar modiefies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol. 117, 565–574.

    PubMed  CAS  Google Scholar 

  7. Artus, N. N., Uemura, M., Steponkus, P. L., Gilmour, S. J., Lin, C. T., and Thomashow, M. F. (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. U.S.A. 93, 13404–13409.

    PubMed  CAS  Google Scholar 

  8. Bastola, D. R., Pethe, V. V., and Winicov, I. (1998). Alfinl, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol. Biol. 38, 1123–1135.

    PubMed  CAS  Google Scholar 

  9. Bohnert, H. J., and Sheveleva, E. (1998). Plant stress adaptations-making metabolism move. Curr. Opinion in Plant Biol. 1, 267–274.

    CAS  Google Scholar 

  10. Bowler, C., and Fluhr, R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Sci. 5, 241–246.

    CAS  Google Scholar 

  11. Bowler, C., Slooten, L., Vandenbranden, S., Rycke, R. D., Botterman, J., Sybesma, C., Montagu, M. V., and Inze, D. (1991). Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO 10, 1723–1732.

    CAS  Google Scholar 

  12. Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Sci. 2, 48–54.

    Google Scholar 

  13. Carranco, R., Almoguera, C., and Jordan, J. (1999). An imperfect hear shock element and different upstream sequences are required for the seed-specific expression ofa small heat shock protein gene. Plant Physiol. 121, 723–730.

    PubMed  CAS  Google Scholar 

  14. Chapman, K. D. (1998). Phospholipase activity during plant growth and development and in response to environmental stress. Trends in Plant Sci. 3, 419–426.

    Google Scholar 

  15. Cheng, W., Su, J., Zhu, B., Jayaprakash, T. L., and Wu, R. (1998). Development of transgenic cereal crop plants that are tolerant to high salt, drought and low temperature. In “Frontiers in Biology: The Challenges ofBiodiversity.” ( C. H. Chou and K. T. Shao, Eds.), pp. 115–122. Academia Sinica, Taipei.

    Google Scholar 

  16. Close, T. (1997). Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiolog. Plant. 100, 291–296.

    CAS  Google Scholar 

  17. Conklin, P. L., Williams, E. H., and Last, R. T. (1996). Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proceedings of the National Academy of Sciences of the USA 93, 9970–9974.

    PubMed  CAS  Google Scholar 

  18. Deutch, C. E., and Winicov, I. (1995). Post-transciptional regulation ofa salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Molecular Biology 27, 411–418.

    PubMed  CAS  Google Scholar 

  19. Dure, L. I. (1992). The LEA proteins of higher plants. In “Control of Plant Gene Expression” ( D. P. S. Verma, Ed.), pp. 325–335. CRC Press, Bocca Raton, FLI.

    Google Scholar 

  20. Eckardt, A. N., McHenry, L., and Guiltinan, M. J. (1998). Overexpression of EmBP, a dominant negative inhibitor of G-box-dependent transactivation, alters vegetative development in transgenic tobacco. Plant Mol. Biol. 27, 411–418.

    Google Scholar 

  21. Flowers, T. J., Koyama, M. L., Flowers, S. A., Sudhakar, C., Singh, K. P., and Yeo, A. R. (2000). QTL: their place in engineering tolerance of rice to salinity. J. Exp. Botany 51, 99–106.

    CAS  Google Scholar 

  22. Foolad, M. R., and Jones, R. A. (1993). Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor. Appl. Genet. 87, 184–192.

    CAS  Google Scholar 

  23. Foyer, C. H., Descourvieres, P., and Kunert, K. J. (1994). Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Envir. 17, 507–523.

    CAS  Google Scholar 

  24. Foyer, C. H., Kingston-Smith, A. H., Harvinson, J., Arisis, A.-C. M., Jouanin, L., and Noctor, G. (1998). The use of transformed plants in the assesment of physiological stress responses. In “Responses of plant metabolism to air polution and global change.” ( L. J. De Kok and I. Stulen, Eds.), pp. 251–261. Backhuys, Leiden, The Netherlands.

    Google Scholar 

  25. Frank, W., Munnik, T., Kerkmann, K., Salamini, F., and Bartels, D. (2000). Water deficit triggers phospholipase D activity in the resurection plant Craterostigma plantagineurn. Plant Cell 12, 111–123.

    CAS  Google Scholar 

  26. Frank, W., Phillips, J., Salamini, F., and Bartels, D. (1998). Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J. 15 (3), 413–421.

    PubMed  CAS  Google Scholar 

  27. Gage, D. A., Rhodes, D., Nolte, K. D., Hicks, W. A., Leustek, T., Cooper, A. J. L., and Hanson, A. D. (1997). A new route for synthesis of dimethyl-sulphoniopropionate in marine algae. Nature 387, 891–894.

    PubMed  CAS  Google Scholar 

  28. Galiba, G., Quarrie, S. A., Sutka, J., Moroounov, A., and Snape, J. W. (1995). RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr I) genes on chromosome 5A of wheat. Theor. Appl. Genet. 90, 1174–1179.

    CAS  Google Scholar 

  29. Galiba, G., Simon-Sarkadi, Kocsy, L., Salgo, G., and Sutka, A. (I 992). Possible chromosomal location of genes determining the osmoregulation of wheat. Theor. Appl. Genet. 85, 415–418.

    Google Scholar 

  30. Gilmour, S. J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854–1865.

    PubMed  CAS  Google Scholar 

  31. Genoud, T., and Metraux, J.-P. (1999). Crosstalk in plant cell signaling: structure and function of the genetic network. Trends in Plant Sci. 4, 503–507.

    Google Scholar 

  32. Guiltinan, M. J., Marcotte, W. R., and Quatrano, R. S. (1990). A plant leucine zipper protein recognizes an abscisic acid response element. Science 250, 267–270.

    PubMed  CAS  Google Scholar 

  33. Gupta, A. S., Webb, R. P., Holaday, A. S., and Allen, R. D. (1993). Overexpression of superoxide dismutase protects plants form oxidative stress. Plant Physiol. 103, 1067–1073.

    PubMed  Google Scholar 

  34. Gurley, W. 13. (2000). HSP I01: a key component for the acquisition of thermotolerance in plants. Plant Cell 12, 457–460.

    PubMed  CAS  Google Scholar 

  35. Guy, C. L., and Haskell, D. (1987). Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol. 84, 872–878.

    PubMed  CAS  Google Scholar 

  36. Halfter, U., Ishitani, M., and Zhu, J.-K. (2000). The Arabidopsis SOS2 protein kinase phsically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. U.S.A. 97, 3735–3740.

    PubMed  CAS  Google Scholar 

  37. Harmon, A. C., Gribskov, M., and Harper, J. F. (2000). CDPKs-a kinase for every Ca+2 signal. Trends in Plant Sci. 5, 154–159.

    CAS  Google Scholar 

  38. Härndahl, U., Buffoni Hall, R., Osteryoung, K. W., Vierling, E., Bornman, J. F., and Sundby, C. (1999). The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress and Chaperones 4, 129–138.

    PubMed  Google Scholar 

  39. Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., and Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, in press.

    Google Scholar 

  40. Hellmann, H., Funck, D., Rentsch, D., and Frommer, W. B. (2000). Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 122, 357–367.

    PubMed  CAS  Google Scholar 

  41. Hirt, H. (2000). Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. U.S.A. 97, 2405 2407.

    Google Scholar 

  42. Holmström, K.-O., Mäntylä, E., Welin, B., Mandal, A., Paiva, E. T., Tunnela, O. E., and Longdesborough, J. (1996). Drought tolerance in tobacco. Nature 379, 683–684.

    Google Scholar 

  43. Hong, S.-W., and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. U.S.A. 97, 4392–4397.

    PubMed  CAS  Google Scholar 

  44. Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.

    PubMed  CAS  Google Scholar 

  45. Ishitani, M., Xiong, L., Lee, H., Stevenson, B., and Zhu, J.-K. (1998). HOS 1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. The Plant Cell 10, 1151–1161.

    PubMed  CAS  Google Scholar 

  46. Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J.-K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell 9, 1935–1949.

    PubMed  CAS  Google Scholar 

  47. Ismail, A. M., Hall, A. E., and Close, T. J. (1999). Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. U.S.A. 96, 13566–13570.

    PubMed  CAS  Google Scholar 

  48. Iturriaga, G., Leyns, L., Villegas, A., Gharaibeh, R., Salamini, F., and Bartels, D. (1996). A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation. Plant Molecular Biology 32, 707–716.

    PubMed  CAS  Google Scholar 

  49. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., and Thomashow, M F. (1998). Aradopsis CBF 1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104–106.

    PubMed  CAS  Google Scholar 

  50. Jain, R. K., and Selvaraj, G. (1997). Molecular genetic improvement of salt tolerance in plants. In “Biotechnology Annual Review” (M. R. El-Gewely, Ed.), Vol. 3, pp. 245–267. Elsevier Science B.V.

    Google Scholar 

  51. Jonak, C., Kiegerl, S., Ligterink, W., Barker, P. J., Huskisson, N. S., and Hirt, H. (1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proceedings of the National Academy of Sciences of the USA 93, 11274–11279.

    PubMed  CAS  Google Scholar 

  52. Kaldenhoff, R., Grote, D., Zhu, J.-J., and Zimmermann, U. (1998). Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. The Plant Journall4, 121–128.

    Google Scholar 

  53. Karakas, B., Ozias-Akins, P., Stushnoff, C., Suefferheld, M., and Rieger, M. (1997). Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Envir. 20, 609–616.

    Google Scholar 

  54. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17, 287–291.

    PubMed  CAS  Google Scholar 

  55. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H.J. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell. 13, 889–905.

    PubMed  CAS  Google Scholar 

  56. Kaye, C., Neven, L., Hofig, A., Li, Q. B., Haskell, D., and Guy, C. (1998). Characterization of a gene for spinach CAP 160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 116, 1367–1377.

    PubMed  CAS  Google Scholar 

  57. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., and Ecker, J. R. (1993). CTRL: a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the RAf family of protein kinases. Cell 72, 427–441.

    PubMed  CAS  Google Scholar 

  58. Kingston-Smith, A. H., Harbinson, J. H., and Foyer, C. H. (1999). Acclimation of

    Google Scholar 

  59. photosynthesis, H2O2 content and antioxidants in maize (Zea mays) grown at suboptimal temperatures. Plant, Cell and Environment 22, 1071–1083.

    Google Scholar 

  60. Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A., and Verma, D. P. S. (1995). Overexpression of A’ -pyrroline-5 -carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387–1394.

    PubMed  CAS  Google Scholar 

  61. Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) inArabidopsis thaliana L.: identification of threee ERDs as HSP cognate genes. PlantMol. Biol. 25, 791–798.

    CAS  Google Scholar 

  62. Kjellbom, P., Larsson, C., Johansson, I., Karlsson, M., and Johanson, U. (1999). Aquaporins and water homeostasis in plants. Trends in Plant Sci. 4, 308–314.

    Google Scholar 

  63. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., and Iba, K. (1994). Genetic enhancement of cold tolerance by expression of a gene for chloroplast w-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601–605.

    PubMed  CAS  Google Scholar 

  64. Kovtun, Y., Chiu, W.-L., Tena, G., and Sheen, J. (2000a). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci, U.S.A. 97, 2940–2945.

    CAS  Google Scholar 

  65. Kovtun, Y., Chiu, W.-L., Tena, G., and Sheen, J. (2000b). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. U.S.A. 97, 2940–2945.

    PubMed  CAS  Google Scholar 

  66. Lebreton, C., Jazic-Jancic, V., Steed, A., Pekic, S., and Quarrie, S. A. (1995). Identification of QTL’s for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Botany 46, 853–865.

    CAS  Google Scholar 

  67. Lee, G. J., Roseman, A. M., Saibil, H. R., and Vierling, E. (1997). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671.

    PubMed  CAS  Google Scholar 

  68. Lee, G. J., and Vierling, E. (2000). A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. PlantPhysiol. 122, 189–197.

    CAS  Google Scholar 

  69. Lee, J. H., Hubel, A., and Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8, 603–612.

    CAS  Google Scholar 

  70. Lee, Y. R., Nagao, R. T., and Key, J. L. (1994). A soybean 101–10 heat shock protein complements a yeast HSP 104 deletion mutant in acquiring thermotolerance. Plant Cell6, 1889–1897.

    Google Scholar 

  71. Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annu. Rev. Plant Physiol. PlantMol. Biol. 49, 199–222.

    CAS  Google Scholar 

  72. Lilius, G., Homberg, N., and Billow, L. (1996). Enhanced NaCI stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio-Technology 14, 177–180.

    Google Scholar 

  73. Lilley, J. M., Ludlow, M. M., McCouch, S. R., and O’Toole, J. C. (1996). Locating QTL for osmotic adjustment and dehydration tolerance in rice. J. Exp. Botany47, 1427–1436.

    Google Scholar 

  74. Lippuner, V., Cyert, M. S., and Gasser, C. S. (1996). Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance in wild-type yeast. J. Biol. Chem. 271, 12859–12866.

    PubMed  CAS  Google Scholar 

  75. Liu, J., Ishitani, M., Halfter, U., Kim, C.-S., and Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Nall. Acad. Sci. U.S.A. 97, 3730–3734.

    CAS  Google Scholar 

  76. Liu, J., and Zhu, J.-K. (1997a). An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc. Natl. Acad. Sci. U.S.A. 94, 14960–14964.

    PubMed  CAS  Google Scholar 

  77. Liu, J., and Zhu, J.-K. (1997b). Proline accumulation and salt-stress-induced gene expression

    Google Scholar 

  78. in a salt-hypersensitive mutant ofArabidopsis. Plant Physiol. 114, 591–596.

    Google Scholar 

  79. Liu, J., and Zhu, J.-K. (1998). A calcium sensor homolog required for plant salt tolerance.

    Google Scholar 

  80. Science 280, 1943–1945.

    Google Scholar 

  81. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with and EREBP/AP2 DNA binding domain separate two cellular signal transduction pahtways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.

    Google Scholar 

  82. Matheos, D. P., Kingsbury, T. J., Ahsan, U. S., and Cunningham, K. W. (1997). Ten p/Crz l p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes and Development 11, 3445–3458.

    CAS  Google Scholar 

  83. McConn, S., Hugly, S., Browse, J., and Somerville, C. (1994). Plant Physiol. 106, 16–09.

    Google Scholar 

  84. McKersie, B. D., and Bowley, S. R. (1997). Active oxygen and freezing tolerance in transgeneic plants. In “Plant Cold Hardiness. Molecular Biology, Biochemistry and Physiology” ( P. H. Li and T. H. H. Chen, Eds.), pp. 203–213. Plenum, New York.

    Google Scholar 

  85. McKersie, B. D., Bowley, S. R., Harjanto, E., and Leprince, O. (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase, Plant Physiol. 111, 1177–1181.

    PubMed  CAS  Google Scholar 

  86. McKersie, B. D., Bowley, S. R., and Jones, K. S. (1999). Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 119, 839–847.

    PubMed  CAS  Google Scholar 

  87. McKersie, B. D., Chen, Y., Beus, M., Rowley, S. R., Bowler, C., Inze, D., D’Halluin, K., and Botterman, J. (1993). Superoxide Dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiology 103, 1155–1163.

    PubMed  CAS  Google Scholar 

  88. McKown, R., Kuroki, G., and Warren, G. (1996). Cold responses of Arabidopsis mutants impaired in freezing tolerance. J. Exp. Botany 47, 1919–1925.

    CAS  Google Scholar 

  89. Mizoguchi, T., Ichimura, K., Yoshida, R., and Shinozaki, K. (2000). MAP kinase cascades in Arabidopsis: their roles in stress and hormone responses. In “MAP Kinases in Plant Signal Transduction.” ( H. Hirt, Ed.), Vol. 27, pp. 29–38. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  90. Moller, S. G., and Chua, N.-H. (1999). Interactions and intersections of plant signaling pathways. J. Mol. Biol. 283, 219–234.

    Google Scholar 

  91. Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., and Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science 287, 476–479

    Google Scholar 

  92. Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., and Shinmyo, A. (2000). Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 122, 1239–1247.

    PubMed  CAS  Google Scholar 

  93. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999a). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters 461, 205–210.

    CAS  Google Scholar 

  94. Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999b). Biological functions ofproline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant’ 18, 185–193.

    CAS  Google Scholar 

  95. Niu, X., Bressan, R. A., Hasegawa, P. M., and Prado, J. M. (1995). Ion homeostasis in NaCI stress environments. Plant Physiol. 109, 735–742.

    PubMed  CAS  Google Scholar 

  96. Noctor, G., and Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. PlantMol. Biol. 49, 249–279.

    CAS  Google Scholar 

  97. Nover, L., Scharf, K.-D., Gagliardi, D., Vergne, P., Czamecka-Verner, E., and Gurley, W. B. (1996). Teh Hsf world: classification and protperties of plant heat stress transcription factors. Cell Stress & Chaperones 1, 215–223.

    CAS  Google Scholar 

  98. Nuccio, M. L., Rhodes, D., McNeil, S. D., and Hanson, A. D. (1999). Metabolic engineering of plants for osmotic stress resistance. Curr. Opinion in Plant Biol. 2, 128–134.

    CAS  Google Scholar 

  99. Nuccio, M. L., Russell, B. L., Nolte, K. D., Rathinasabapathi, B., Gage, D. A., and Hanson, A. D. (1998). The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 16, 487–498.

    PubMed  CAS  Google Scholar 

  100. Pardo, J. M., Reddy, M. P., Yang, S., Maggio, A., Huh, G.-H., Matsumoto, T., Coca, M. A., Paino-D’Urzo, M., Koiwa, H., Yun, D.-J., Watad, A. A., Bressan, R. A., and Hasegawa, P. M. (1998). Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. U.S.A. 95, 9681–9686.

    PubMed  CAS  Google Scholar 

  101. Parsell, D. A., and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and ractivation of damaged proteins. Annu. Rev. Genet. 27, 437–496.

    PubMed  CAS  Google Scholar 

  102. Petrusa, L. M., and Winicov, I. (1997). Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem. 35, 303–310.

    CAS  Google Scholar 

  103. Pilon-Smits, E. A. H., Ebskamp, M. J. M., Paul, M. J., Jeuken, M. J. W., Weisbeek, P. F., and Smeekens, S. C. M. (1995). Improved performance of transgenic fructanaccumulating tobacco under drought stress. Plant Physiol. 107, 125–130.

    PubMed  CAS  Google Scholar 

  104. Prändl, R., Hinderhofer, K., Eggers-Schumacher, G., and Schö fI1, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet. 258, 269–278.

    PubMed  Google Scholar 

  105. Qin, X., and Zeevaart, J. A. D. (1999). The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. U.S.A. 96, 15354–15361.

    PubMed  CAS  Google Scholar 

  106. Queitsch, C., Hong, S.-W., Vierling, E., and Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492.

    CAS  Google Scholar 

  107. Ray, I. M., Townsend, M.S., Muncy, C.M. and Henning, J.A.. (1999). Heritabilities of water-use efficiency traits and correlations with agronomic traits in water-stressed alfalfa. Crop Sci. 39, 494–498.

    Google Scholar 

  108. Reichman, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C-A., Keddie, J., Adam, L., Pineda, O., Tatclife, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Bround, P., Zhang, J.Z., Grandehari, D., Sherman, B.K., Yu, G-L. (2000). Arabidopsis transcription factors; genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110

    Google Scholar 

  109. Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., and Ruis, H.

    Google Scholar 

  110. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn 1 p and the noverl nuclear factor Hot 1 p. Mol. Cell. Biol. 19, 5474–5485.

    Google Scholar 

  111. Ribaut, J.-M., and Hoisington, D. (1998). Marker-assisted selection: new tools and strategies. Trends in Plant Sci. 3, 236–239.

    Google Scholar 

  112. Roxas, V. P., Smith, R. K., Allen, E. R., and Allen, R. D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco during stress. Nature Biotechnology 15, 988–991.

    PubMed  CAS  Google Scholar 

  113. Rubio, F., Gassmann, W., and Schroeder, J. I. (1996). Sodium-driven potassium uptake by the plant potassium transporter HKT 1 and mutations conferring salt tolerance. Science 270, 1660–1663.

    Google Scholar 

  114. Sakamoto, A., Alia, and Murata, N. (1998). Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38, 1011–1019.

    CAS  Google Scholar 

  115. Schirmer, E. C., Lindquist, S., and Vierling, E. (1994). An Arabidopsis heat shock prtein

    Google Scholar 

  116. coplements a thermotolerance defect in yeast. Plant Cell 6, 1899–1909.

    Google Scholar 

  117. Schöffl, F., Prändl, R., and Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiol. 117, 1135–1141.

    Google Scholar 

  118. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninici, P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression pattern of 300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell, 13, 61–72.

    PubMed  CAS  Google Scholar 

  119. Serrano, R., Culianz-Macia, A., and Moreno, V. (1999). Genetic engineering of salt and drought tolerance with yeast regulatory genes. Scientia Hort. 78, 261–269.

    CAS  Google Scholar 

  120. Sheen, J. (1996). Ca’2 -Dependent protein kinases and stress signal transduction in plants. Science 274, 1900–1902.

    PubMed  CAS  Google Scholar 

  121. Shen, B., Jensen, R. G., and Bohnert, H. J. (1997). Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113, 1177–1183.

    PubMed  CAS  Google Scholar 

  122. Sheveleva, E., Chmara, W., Bohnert, H. J., and Jensen, R. G. (1997). Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol. 115, 1211–1219.

    PubMed  CAS  Google Scholar 

  123. Sheveleva, E. V., Marquez, S., Chmara, W., Zegeer, A., Jensen, R. G., and Bohnert, H. J. (1998). Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. Plant Physiol. 117, 831–839.

    PubMed  CAS  Google Scholar 

  124. Shi, H., Ishitani, M., Kim, C., and Zhu, J-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS I encodes a putative Na’/H’ antiporter. Proc. Natl. Acad. Sci. USA, 97, 6896–6901.

    PubMed  CAS  Google Scholar 

  125. Shinozaki, K., and Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiology 115, 327–334.

    PubMed  CAS  Google Scholar 

  126. Shinozaki, K., and Yamaguchi-Shinozaki, K. (1999). Molecular responses to drought stress. In “Cold, drought, heat and salt stress in higher plants” (K. Shinozaki and K. Yamaguchi-Shinozaki, Eds.). R.G. Landes Co., Austin, TX.

    Google Scholar 

  127. Shinozaki, K., Yamaguchi-Shinozaki, K., Liu, Q., Kasuga, M., Ichimura, K., Mizoguchi, T., Urao, T., Miyata, S., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Ito, T., and Seki, M. (1999). Molecular responses to drought stress in plants: regulation of gene expression and signal transduction. In “Plant Responses to Environmental Stress.” ( M. F. Smallwood, C. M. Calvert, and D. J. Bowles, Eds.), pp. 133–143. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  128. Shinwari, Z. K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250, 161–170.

    PubMed  CAS  Google Scholar 

  129. Singla, S. L., Pareek, A., and Grover, A. (1997). Yeast HSP 104 homologue rice HSP 110 is developmentally-and stress-regulated. Plant Sci. 125, 211–219.

    CAS  Google Scholar 

  130. Steponkus, P. L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35, 543–584.

    CAS  Google Scholar 

  131. Steponkus, P. L., Uemura, M., and Webb, M. S. (1993). Membrane destabilization during freeze-induced dehydration. Curr. Topics Plant Physiol. 10, 37–47.

    CAS  Google Scholar 

  132. Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the Crepeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperatrue and water deficit. Proc Natl Acad Sci USA. 94, 1035–1040.

    CAS  Google Scholar 

  133. Storlie, E. W., Allan, R. E., and Walker-Simmons, M. K. (1998). Effect of the Vrn1-Frl interval on cold hardiness levels in near-isogenic wheat lines. Crop Sci. 38, 483–488.

    Google Scholar 

  134. Su, J., Shen, Q., Ho, T.-H. D., and Wu, R. (1998). Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol. 117, 913–922.

    PubMed  CAS  Google Scholar 

  135. Tarczynski, M. C., Jensen, R. G., and Bohnert, H. J. (1993). Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510.

    PubMed  CAS  Google Scholar 

  136. Teulat, B., This, D., Khairallah, M., Borries, C., Ragot, C., Sourdille, P., Leroy, P., Monneveux, P., and Charrier, A. (1998). Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor. Appl. Gen. 96, 688–698.

    CAS  Google Scholar 

  137. Thiele, A., Herold, M., Lenk, I., Quail, P. H., and Gatz, C. (1999). Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol. 120, 73–81.

    PubMed  CAS  Google Scholar 

  138. Thomas, J. C., Sepahi, M., Arendall, B., and Bohnert, H. J. (1995). Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Envir. 18, 801–806.

    CAS  Google Scholar 

  139. Thomashow, M. F. (1990). Molecular genetics of cold acclimation in higher plants. Adv. Genet. 28, 99–131.

    CAS  Google Scholar 

  140. Thomashow, M. F. (1998). Role of cold-responsive genes in plant freezing tolerance. Plant Physiology 118, 1–7.

    PubMed  CAS  Google Scholar 

  141. Thomashow, M. F. (1999). Plant Cold Acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599.

    PubMed  CAS  Google Scholar 

  142. Torsethaugen, G., Pitcher, L. H., Zilinskas, B. A., and Pell, E. J. (1997). Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114, 529–537.

    PubMed  CAS  Google Scholar 

  143. Trossat, C., Rathinasabapathi, B., Weretilnyk, E. A., Shen, T.-L., Huang, Z.-H., Gage, D. A., and Hanson, A. D. (1998). Salinity promotes accumulation of 3dimethylsulfonioproprionate and its precursor S-methylmethionine in chloroplasts. Plant Physiol. 116, 165–171.

    PubMed  CAS  Google Scholar 

  144. Tyystjärvi, E., Riikonen, M., Arisi, A.-C. M., Kettunen, R., Jouanin, L., and Foyer, C. H. (1999). Photoinhibition of photosystem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing susperoxide dismutase. Physiol. Plant. 105, 409–416.

    Google Scholar 

  145. Jrao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashi da, N., and Shinozaki, K. (1994). Two genes that encode Ca2+ -dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 244, 331–340.

    Google Scholar 

  146. Van Camp, W., Capiau, K., Van Montagu, M., Inzè, D., and Slooten, L. (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112, 1703–1714.

    PubMed  Google Scholar 

  147. van der Krol, A. R., van Poecke, R. M. P., Vorst, O. F. J., Voogt, C., van Leeuwen, W., BorstVrensen, T. W. M., Takatsuji, H., and van der Plas, L. H. W. (1999). Developmental and wound-, cold-, desiccation-, ultraviolet-B-stess-induced modulations in the expression of teh petunia zinc finger transcription factor gene ZPT2–2. Plant Physiol. 121, 1153–1162.

    CAS  Google Scholar 

  148. van der Luit, A. H., Olivari, C., Haley, A., Knight, M. R., and Trewawas, A. J. (1999). Distinct calcium signaling pathways regulate clamodulin gene expression in tobacco. Plant Physiol. 121, 705–714.

    PubMed  CAS  Google Scholar 

  149. Veena, Reddy, V. S., and Sopory, S. K. (1999). Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J. 17, 385–395.

    CAS  Google Scholar 

  150. Verma, D. P. S. (1999). Osmotic stress tolerance in plants: role of proline and sulfur metabolisms. In “Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants” ( K. Shinozaki and K. Yamaguchi-Shinozaki, Eds.), pp. 153–168. R.G.Landes Co., Austin, TX.

    Google Scholar 

  151. Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620.

    CAS  Google Scholar 

  152. Warren, G., McKown, R., Marin, A., and Teutonico, R. (1996). Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.)Heynh. Plant Physiol. 111, 1011–1019.

    PubMed  CAS  Google Scholar 

  153. Waters, E. R., Lee, G. J., and Vierling, E. (1996). Evolution, structure and function of the small heat-shock proteins in plants. J. Exp. Bot. 47, 325–338.

    CAS  Google Scholar 

  154. Wehmeyer, N., and Vierling, E. (2000). The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122, 1099–1108.

    PubMed  CAS  Google Scholar 

  155. Werner-Fraczek, J. E., and Close, T. J. (1998). Genetic studies of Triticeae dehydrins: assignment of seed proteins and a regulatory factor to map positions. Theor. Appl. Genet. 97, 220–226.

    CAS  Google Scholar 

  156. Winicov, I. (1991). Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep 10, 561–564.

    CAS  Google Scholar 

  157. Winicov, I. (1993). cDNA encoding putative zinc forger motifs from salt-tolerant alfalfa (Medicago saliva L.) cells. Plant Physiol. 102, 681–682.

    Google Scholar 

  158. Winicov, I. (1996). Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines. Plant Sci. 113, 105–111.

    CAS  Google Scholar 

  159. Winicov, I. (1998). New molecular approaches to improving salt tolerance in crop plants. Annals of Botany 82, 703–710.

    CAS  Google Scholar 

  160. Winicov, I. (2000a). Alfm l transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210, 416–422.

    PubMed  CAS  Google Scholar 

  161. Winicov, I. (2000b). Molecular strategies to overcome salt stress in agriculture. ln “Molecular tools for the asesment of plant adaptation to the environment” (M. J. Hawkesford and P. Buchner, Eds.), pp. in press. Kluwer, The Netherlands.

    Google Scholar 

  162. Winicov, I., and Bastola, D. R. (1997). Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiologia Plant. 19, 435–449.

    CAS  Google Scholar 

  163. Winicov, I., and Bastola, D. R. (1999). Transgenic overexpression of the transcription factor Alfin 1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120, 473–80.

    PubMed  CAS  Google Scholar 

  164. Winicov, I., and Button, J. D. (1991). Induction of photosynthesis gene transcripts by sodium chloride in a salt tolerant alfalfa cell line. Planta 183, 478–483.

    CAS  Google Scholar 

  165. Winicov, I., and Krishnan, M. (1996). Transcriptional and post-transcriptional activation of genes in salt-tolerant alfalfa cells. Planta 200, 397–404.

    CAS  Google Scholar 

  166. Winicov, I., and Shirzadegan, M. (1997). Tissue specific modulation of salt inducible gene expression: callus versus whole plant response in salt tolerant alfalfa. Physiol Plant 100, 314–319.

    CAS  Google Scholar 

  167. Winicov, I., Waterborg, J. H., Harrington, R. E., and McCoy, T. J. (1989). Messenger RNA induction in cellular salt tolerance of alfalfa (Medicago sativa). Plant Cell Rep 8, 6–11.

    CAS  Google Scholar 

  168. Xin, Z., and Browse, J. (1998). eskimoI mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. U.S.A. 95, 7799–7804.

    Google Scholar 

  169. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H. D., and Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA 1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249–257.

    PubMed  CAS  Google Scholar 

  170. Yang, W. J., Nadolska-Orczyk, A., Wood, K. V., Hahn, D. T., Rich, P. J., Wood, A. J., Saneoka, H., Premachandra, G. S., Bonham, C. C., Rhodes, J. C., Joly, R. J., Samaras, Y., Godsbrough, P. B., and Rhodes, D. (1995). Near-isogenic lines of maize differing for glycinebetaine. Plant Physiology 107, 621–630.

    PubMed  CAS  Google Scholar 

  171. Zhang, H-X., and Blumwald, E. (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not fruit. Nature Biotechnology, 19, 765–768.

    PubMed  CAS  Google Scholar 

  172. Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y.-L., and Wu, R. (I 998a). Overexpression of a Ai -pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci. 139, 41–48.

    Google Scholar 

  173. Zhu, J.-K., Liu, J., and Xiong, L. (1998b). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell 10, 1181–1191.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winicov, I. (2002). Molecular Markers and Abiotic Stresses. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2356-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2356-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5982-6

  • Online ISBN: 978-94-017-2356-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics