Skip to main content

Genetic Engineering of Conifers for Plantation Forestry Pinus radiata Transformation

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 66))

Abstract

Conventional breeding for plantation forestry:

Plantation forestry, based on successful breeding of superior tree genotypes, is becoming more widely used by international forestry companies, since it offers the possibility to grow and manage forests of high economic value and superior quality. This also offers the clonal multiplication of selected families from controlled crosses, which is the best method to achieve genetic gain at present. As an example, Pinus radiata, a conifer originating from California, is intensively used in plantation forestry in Australia, New Zealand and Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken-Christie, J., Thorpe, T.A. (1984). Clonal propagation of gymnosperms. In I.K. Vasil (ed.). Proc. FRUNZFP Forests Ltd clonal forestry workshop, NZ Ministry of Forestry, Forest Research Institute bulletin No. 160 pp82–95. ISSN 0111–8125.

    Google Scholar 

  • Aitken-Christie, J., Connett, M. (1992) Micropropagation of forest trees, K. Kurata and T. Kozai (eds.), Transplant Production Systems, pp 163–194.

    Google Scholar 

  • Akiyoshi, D., Klee, H., Amasino, R., Nester, E., Gordon, M.P. (1984) The T-DNA of Agrobacterium tumefaciens encodes an enzyme for cytokinin biosynthesis, Proceedings of the National Academy of Science, USA 81, pp 5994–5998.

    Article  CAS  Google Scholar 

  • Alstad, D.N., Andow, D.A. (1995) Managing the evolution of insect resistance to transgenic plants, Science 268, pp 1894–1896.

    Article  PubMed  CAS  Google Scholar 

  • Baucher, M., Chabbert, B., Pilate, G., Van Doorsselaere, J., Tollier, M.-T., Petit-Conil, M., Cornu, D., Monties, B., Van Montagu, M., Inzé, D., Jouanin, L., Boerjan, W. (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in Poplar, Plant Physiology 112, pp 1479–1490.

    PubMed  CAS  Google Scholar 

  • Baucher, M., Monties, B., Van Montagu, M., Boerjan, W. (1998) Biosynthesis and genetic engineering of lignin, Critical Reviews in Plant Sciences 17 (2): 125–197.

    Article  CAS  Google Scholar 

  • Bekkaoui, F., Datla, R.S.S., Pilon, M., Tautorus, T.E., Crosby, W.L., Dunstan, D.I. (1990) The effects of promoter on transient expression in conifer cell lines, Theoretical and Applied Genetics 79, pp 353–359.

    Article  CAS  Google Scholar 

  • Bergmann, B.A., Stomp, A.-M. (1994) Family and clonal variation in susceptibility of Pinus radiata to Agrobacterium tumefaciens in relation to in vitro shoot growth rate, New Zealand Journal of Forestry Science 24, pp 3–10.

    Google Scholar 

  • Bomhoff, G., Klapwijk, P.M., Kester, H.C.M., Schilperoort, R.A., Hernalsteens, J.P., Schell, J. (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens, Molecular and General Genetics 145, pp 177–181.

    PubMed  CAS  Google Scholar 

  • Boudet, A.M., Lapierre, C., Grimapettenati, J. (1995) Tansley review No. 80: Biochemistry and molecular biology of lignification, Plant Physiology 129, pp 203–236.

    CAS  Google Scholar 

  • Boudet, A.M., Grimapettenati, J. (1996) Lignin genetic engineering, Molecular Breeding 2 (1): 25–39.

    Article  CAS  Google Scholar 

  • Bourque, J.E. (1995) Antisense strategies for genetic manipulations in plants, Plant Science 105, pp 125–149

    Article  CAS  Google Scholar 

  • Brown, W. (1989) The cost of chemical weed control in Pinus radiata: A study of three central North Island New Zealand nurseries. In Menzies, M.I., Parrott, G.E., Whitehouse, L.J., Eds., Efficiency of stand establishment operations, Proceedings of a IUFRO Symposium held at the Forest Research Institute, Rotorua, New Zealand, 11–15 September 1989. FRI Bulletin 156,pp50–55.1SSN:0111–8129.

    Google Scholar 

  • Campbell, M.M., Sederoff, R.R. (1996) Variation in lignin content and composition, Plant Physiology 110, pp 3–13.

    PubMed  CAS  Google Scholar 

  • Carson, M.J., Burdon, R.D., Carson, S.D., Firth, A., Shelboume C.J.A., Vincent, T.G. (1989) Realising genetic gains in production forests, Proceedings IUFRO working parties on Douglas fir, Lodgepole pine, Sitka and Abies spp. - Breeding Genetic Resources. Session: Genetic gains in production forests. Olympia, Washington.

    Google Scholar 

  • Carson, M.J., Burdon, R.D., Carson, S.D., Firth, A., Shelboume, C.J.A., Vincent, T.G. (1990). Realising genetic gains in production forests. Paper 3.1 In: Breeding and genetic resources: Proceedings, Joint Meeting of Western Forest Genetics Association and IUFRO Working Parties S2.02.05, S2.02.06, S2.02.12 and 52.02.14 on Douglas-fir, Contorta Pine, Sitka Spruce, and Abies, Breeding and Genetic Resources, Olympia, Washington, USA, August 1990. FRI Reprint No. 2367.

    Google Scholar 

  • Carson, M.J., Vincent, T.G., Firth, A. (1992) Control-pollinated and meadow seed orchards of radiata pine, Proceedings of the AFOCEL meeting “Mass production technology for genetically improved fast growing forest tree species” Bordeaux, 1992. pp13–20. FRI Reprint No. 2453.

    Google Scholar 

  • Chalupa, V. (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst, Communicationes Instituti Forestalis Cechosloveniae. 14, pp 57–63.

    Google Scholar 

  • Chang S, Puryear T, Caimey I (1993) A simple and efficient method for isolating RNA from pine trees, Plant Mol Biol Rep 11 (2): 113–116.

    Article  CAS  Google Scholar 

  • Charest, P.J., Calero, N., Lachance, D., Datla, R.S.S., Duchêsne, L.C., Tsang, E.W.T. (1993) Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the ß-glucuronidase reporter gene, Plant Cell Reports 12, pp 189–193.

    Article  CAS  Google Scholar 

  • Charest, P.J., Devantier, Y., Lachance, D. (1996a) Stable genetic transformation of Picea mariana (Black spruce) via particle bombardment, In vitro Cell Developmental Biology–Plant 32, pp 91–99.

    Article  Google Scholar 

  • Charest, P.J. (1996b) Biotechnology in forestry: Examples from the Canadian Forest Service, The Forestry Chronicle 72, 1, pp 37–42

    Google Scholar 

  • Chilton, M.D., Drummond, M.J., Merlo, D.J., Sciacy, D., Montoya, A.C., Gordon, M.P., Nester, E.W. (1977) Stable incorporation of plasmid DNA into higher plant cells, the molecular basis of crown gall tumorigenesis, Cell 11, pp 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, J.; McElroy, D. (1994) Transgene inactivation: Plants fight back, Bio/Technology 12: 883888

    Google Scholar 

  • Chmelar, J. (1974) Propagation of willows by cuttings, New Zealand Journal of Forestry Science 4, 2, pp 185–190.

    Google Scholar 

  • Clapham, D., Ekber, I., Eriksson, G., Hood, E.E., NordII, L. (1990) Within-population variation in susceptibility to Agrobacterium tumefaciens A281 in Picea abies (L:) Karst, Theoretical and Applied Genetics 79, pp 654–656.

    Google Scholar 

  • Comejo, M.-J., Luth, D., Blankenship, K.M., Anderson, O.D., Blech!, A.E. (1993) Activity of a maize ubiquitin promoter in transgenic rice, Plant Molecular Biology 23, pp 567–581.

    Article  Google Scholar 

  • Davenhill, N.A., Ray, J.W., Vanner, A.L. (1994) Forest weed control manual–A guide to herbicide use in forests, New Zealand Forest Research Institute, FRI Bulletin No 180. ISSN: 0111–8129.

    Google Scholar 

  • Davies, G.J.; Sheikh, M.A.; Ratcliffe, O.J.; Coupland, G., Fumer, I.J. (1997) Genetics of homology-dependent gene silencing in Arabidopsis; a role for methylation, The Plant Journal 12 (4): 791–804

    Article  PubMed  CAS  Google Scholar 

  • Davies, H.E. Aitken-Christie, J. (1991). Cold storage technology update. In J.T. Miller, Ed, Proceedings FRI/NZFP Forests Ltd clonal forestry workshop, NZ Ministry of Forestry, Forest Research Institute Bulletin No. 160, pp74–75. ISSN: 0111–8129.

    Google Scholar 

  • Deak, M., Kiss, G.B., Konez, C., Dudits, D. (1986) Transformation of Medicago by Agrobacterium mediated gene transfer, Plant Cell Reports 5, pp 97–100.

    Article  CAS  Google Scholar 

  • De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, Rao Movva, N., Thompson, C., Van Montagu, M., Leemans, J. 1987 Engineering herbicide resistance in plants by expression of a detoxifying enzyme. The EMBO Journal 6, pp 2513–2518.

    CAS  Google Scholar 

  • Doyle J (1990) Isolation of Plant DNA from Fresh Tissue, Focus (Life Technologies) 12 (1): 13–15.

    Google Scholar 

  • Dwivedi, U.N., Campbell, W.H., Yu, J., Dalta, R.S.S., Bugos, R.C., Chiang, V.L., Podila, G.K. (1994) Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus, Plant Molecular Biology 26, pp 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, D., Roberts, D., Sutton, B., Lazaroff, W., Webb, D., Flinn, B. (1989) Transformation of white spruce and other conifer species by Agrobacterium tumefaciens, Plant Cell Reports 8, pp l620.

    Google Scholar 

  • Ellis, D.D., McCabe, D., Russell, D., Martinell, B., McCown, B.H. (1991) Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca (white spruce), Plant Molecular Biology 17, pp 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, D.D., McCabe, D.E., McInnis, S., Ramachandran, R., Russell, D.R., Wallace, K.M., Martinell, B.J., Roberts, D.R., Raffa, K.F., McCown, B.H. (1993) Stable transformation of Picea glauca by particle acceleration, Bio/Technology 11, pp 84–89.

    Article  CAS  Google Scholar 

  • Erickson, R.P. (1993) The use of antisense approaches to study development, Developmental Genetics 14, pp 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M. (1989) The scanning model for translation: An update, The Journal of Cell Biology 109, pp 229–241.

    Article  Google Scholar 

  • Fillatti, J.J., Sellmer, J., McCown, B., Haissig, B., Cornai, L. (1987) Agrobacterium-mediated transformation and regeneration of Populus,Molecular and General Genetics 206, pp192199.

    Google Scholar 

  • Fromm, M., Taylor, L.P., Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation, Nature 319, 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SR (1991) Quantitation of uidA activity by fluorimetry. In uidA protocols: Using the uidA gene as a reporter for gene expression, Academic Press, Inc.

    Google Scholar 

  • Guilley, H., Dudley, R.K., Jonard, G., Balaes, E., Richrads, K.E. (1982) Transcription of Cauliflower Mosaic Virus DNA: detection of promoter sequences and characterisation of transcripts, Cell 30: 763–773

    Article  PubMed  CAS  Google Scholar 

  • Hakman, I., von Arnold, S. (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce), Journal of Plant Physiology 121, pp 149–158.

    Article  CAS  Google Scholar 

  • Hargreaves, D.L., Smith, D.R. (1994a) The effects of short-term and long-term cryopreservation on embryo maturation potential of Pinus radiata tissue, Cryobiology International Journal of Low Temperature biology and Medicine Volume 31, Number 6, December 1994, pp 577.

    Google Scholar 

  • Hargreaves, D.L., Smith, D.R. (1994b) Techniques used for cryopreservation of Pinus radiata embryogenic tissue, Cryobiology International Journal of Low Temperature biology and Medicine Volume 31, Number 6, December 1994, pp 578.

    Google Scholar 

  • Hargreaves, C.; Grace, L.J. (1998) Factors influencing regrowth of cryopreserved embryogenic tissue of Pinus radiata D.Don, In Proceedings of the 8“ meeting of The conifer biotechnology Working Group June 7–11, 1998, Rutgers University, New Jersey, USA.

    Google Scholar 

  • Holland, L., Gemmell, J.E., Charity, J.A., Walter, C. (1997) Foreign gene transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens, New Zealand Journal of Forestry Science 27 (3): pp 289–304.

    CAS  Google Scholar 

  • Horgan, K., Aitken, J. (1981) Reliable plantlet formation from embryos and seedling shoot tips of radiata pine, Physiologica Plantarum 53, pp 170–175.

    Article  CAS  Google Scholar 

  • Huang, Y., Diner, A.M., Kamosky, D.F. (1991) Agrobacterium rhizogenes mediated genetic transformation and regeneration of a conifer: Larix decidua,In Vitro Cell Developmental Biology 27, pp201–207.

    Google Scholar 

  • Humara, J.M., Lopez, M., Ordas, R.J. (1998): Agrobacterium tumefaciens mediated transformation of Pinus pinea L. cotyledons: an evaluation of factors affecting uid A gene expression, submitted to Transgenic Research.

    Google Scholar 

  • Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens, Nature Biotechnology 14, pp 745–750.

    Article  PubMed  CAS  Google Scholar 

  • James, C., Krattiger, A.F. (1996) Global review of the field testing and commercialisation of transgenic plants: 1986 to 1995: The first decade of crop biotechnology. ISAAA Briefs No. 1 ISAAA: Ithaca, NY, pp 1–3.

    Google Scholar 

  • Jefferson RA (1987) Assaying chimaeric genes in plants: The uidA gene fusion system, Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Klein, T.M., Wolf, E.D., Wu, R., Sandford, J.C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells Nature 327, 70–73.

    CAS  Google Scholar 

  • Mett, V.L., Lochhead, L.P., Reynolds, P.H.S. (1993) Copper controllable gene expression system for whole plants, Proceedings of the National Academy of Science, USA 90, pp 4567–71.

    Article  CAS  Google Scholar 

  • Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Croissland, L., Dawson, J., Desai, N., Hill, M., Dadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M., Evola, S.V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Bio/Technology 11, pp 194–200.

    Article  CAS  Google Scholar 

  • Kuai, B., Morris, P. (1996) Screening for stable transformants and stability of beta-glucuronidase gene expression on suspension cultured cells of tall fescue (Festuca arundinacea), Plant Cell Reports 15, pp 804–808.

    Article  CAS  Google Scholar 

  • Last, D.I., Brettell, R.I.S., Chamberlain, A.M., Chaudhury, A.M., Larking, P.J., Marsh, E.L., Peacock, W.J., Dennis, E.S. (1991) pEmu: an improved promoter for gene expression in cereal cells, Theoretical and Applied Genetics 81, pp 581–588.

    Google Scholar 

  • Levee, V., Lelu, M.A., Jouanin, L, Cornu, D., Pilate, G. (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L-decidua) and transgenic plant regeneration, Plant Cell Reports 16(10): 680–685.

    Google Scholar 

  • Loopstra, C.A., Stomp, A.-M., Sederoff, R. (1990) Agrobacterium-mediated DNA transfer in sugar pine, Plant Molecular Biology 15, pp 1–9.

    Google Scholar 

  • Mackay,R.J., Hatfield, R.D., Omally, D,M., Whetten, R.W., Sederoff, R.R. (1997) Abnormal lignin in a loblolly pine mutant, Science 277 (5323): 235–239.

    Article  PubMed  Google Scholar 

  • Matzke, M.A., Matzke, A.J.M. (1995) How and why do plants inactivate homologous (trans)genes?, Plant Physiology 107, pp 679–685.

    PubMed  CAS  Google Scholar 

  • Mazur, B.J., Chui, C.-F., Smith, J.K. 1987 Isolation and characterisation of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiology 85, pp 1110–1117.

    Article  PubMed  CAS  Google Scholar 

  • McCown, B.H., McCabe, D.E., Russel, D.R., Robinson, D.J., Barton, K.A. and Raffa, K.F. (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration, Plant Cell Reports 9, pp 590–594.

    Article  CAS  Google Scholar 

  • McGranahan, G.H., Leslie, C.A., Uratsu, S.L., Martin, L.A., Dandekar, A.M. (1988) Agrobacteriummediated transformation of walnut somatic embryos and regeneration of transgenic plants, Bio/Technology 6, 800–804.

    Google Scholar 

  • Mellerowicz, E.J., Horgan, K., Walden, A., Coker, A., Walter, C. (1998) PRFLL - a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia, Planta, in press.

    Google Scholar 

  • Menzies, M.I., Faulds, T., Dibley, M., Aitken-Christie, J. (1985) Vegetative propagation of radiata pine in New Zealand. In D.B. South, Ed., Proceedings of the International Symposium on Nursery Management Practices for the Southern Pines. IUFRO/Alabama Agricultural Experimental Station, Auburn University, Montgomer, Alabama, USA, August 4–9, 1985, pp167–190. FRI reprint 1907.

    Google Scholar 

  • Menzies, M.I. (1995) Propagation of Radiata Pine Plants for Plantation Forestry, Combined Proceedings International Plant Propagators ’ Society. 44, pp 382–388.

    Google Scholar 

  • Morris, J.W., Castle, L.A., Morris, R.O. (1989) Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms, Physiological and Molecular Plant Pathology 34, pp 451–461.

    Article  Google Scholar 

  • Mouradov, A., Glassick, T., Hamdorf, B., Murphy, L., Fowler, B., Marla, S., Teasdale, R.D. (1998) NEEDLY, a pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems, Proc Natl Acad Sci USA 26;95(11): 6537–6542

    Google Scholar 

  • Nikles, D.G. (1992) Mass production technology for genetically improved fast growing forest tree species, Bordeaux 14–18 September 1992. AFOCEL.

    Google Scholar 

  • Piquemal, J., Lapierre, C., Myton, K., Oconnell, A., Schuch, W., Grimapettenati, J. (1998) Down–regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants, Plant Journal 13 (1): 71–83.

    Article  CAS  Google Scholar 

  • Ritala, A., Mannonen, L., Aspegren, K., Salmenkallio-Marttila, M., Kurtén, U., Hannus, R., Lozano, J.M., Teeri, T.H., Kauppinen, V. (1993) Stable transformation of barley tissue culture by particle bombardment, Plant Cell Reports 12, pp 435–440.

    Article  CAS  Google Scholar 

  • Rey, M., Gonzalez, M.V., Ordas, R.J., Tavazza, R., Ancora, G. (1996) Factors affecting transient gene expression in cultured radiata pine cotyledons following particle bombardment, Physiologica Plantarum 96 (4), pp 630–636

    Article  CAS  Google Scholar 

  • Roberts, D.R.; Sutton, B.C.S.; Flinn, B.S. (1989) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity, Can. J. Bot. 68: 1086–1090.

    Google Scholar 

  • Sagi, L., Panis, B., Remy, S., Schoofs, H., De Smet, K., Swennen, R., Cammue, B.P.A. (1995) Genetic Transformation of Banana and Plantain (Musa spp.) via Particle Bombardment, Bio/Technology 13: 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning - A Laboratory Manual, C. Nolan (eds), Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimising the biolistic process for different biological applications, Meth Enzymol 217: 483–509.

    Article  PubMed  CAS  Google Scholar 

  • Sederoff, R., Stomp, A.-M., Scott Chilton, W., Moore, L.W. (1986) Gene transfer into loblolly pine by Agrobacterium tumefaciens, Bio/Technology 4, pp 647–649.

    Article  CAS  Google Scholar 

  • Shahin, E.A., Sukhapinda, K., Simpson, R.B., Spivey, R. (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri-plasmid T-DNA, Theoretical and Applied Genetics 72, pp 770–777.

    Article  CAS  Google Scholar 

  • Shelbourne, C.J.A., Carson, M.J., Wilcox, M.D. (1989) New techniques in the genetic improvement of radiata pine, Commonwealth Forest Review 68, pp 3.

    Google Scholar 

  • Smith, D.R. (1986) Radiata pine (Pinus radiata D. Don), In Biotechnology of tree improvement. Ed. Y.P.S. Bajaj. Springer -Verlag, pp 274–291.

    Google Scholar 

  • Smith, D.R. (1996) Growth medium US patent number: 5, 565, 355.

    Google Scholar 

  • Smith, D.R.; Walter, C.; Warr, A.A.; Hargreaves, C.L.; Grace, L.J. (1994) Somatic embryogenesis joins the plantation forestry revolution in New Zealand, Proceedings TAPPI Biological Sciences Symposium, Minneapolis, 19–29.

    Google Scholar 

  • Walter, C., Smith, D.R. (1995) Transformed Pinus radiata now growing in greenhouses at the New Zealand Forest Research Institute, Dendrome 2: 2, pp 1–4.

    Google Scholar 

  • Stoeger, E., Fink, C., Pfosser, M., Heberle-Bors, E. (1995) Plant transformation by particle bombardment of embryogenic pollen, Plant Cell Reports 14: 273–278

    CAS  Google Scholar 

  • Stomp, A.-M., Loopstra, C. Scott Chilton, W., Sederoff, R.R., Moore, L.W. (1990) Extended host range of Agrobacterium tumefaciens in the Genus Pinus, Plant Physiology 92, 1226–1232.

    CAS  Google Scholar 

  • Strauss, S.H., Rottmann, W.H., Brunner, A.M., Sheppard, L.A. (1995) Genetic engineering of reproductive sterility in forest trees, Molecular Breeding 1, 5–26.

    Article  CAS  Google Scholar 

  • Tabashnik, B.E. (1994) Evolution of resistance to Bacillus thuringiensis, Annual Review of Entomology 39, pp 47–79.

    Article  Google Scholar 

  • Tzfira, T., Yarnitzky, O., Vainstein, A., Altman, A. (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis mill, Plant Cell Reports 16, pp 26–31.

    Google Scholar 

  • Toda, R. (1974) Vegetative propagation in relation to Japanese forest tree improvement. New Zealand, Journal of Forestry Science 4, 2, pp 410–417.

    Google Scholar 

  • Salm, T., Bosch, D., Honée, G., Feng, L., Munsterman, E., Bakker, P., Stiekema, W.J., Visser, B. (1994) Insect resistance of transgenic plants that express modified Bacillus thuringiensis crylA (b) and cryIC genes: a resistance management strategy, Plant Molecular Biology 26, pp 51–59.

    Article  PubMed  Google Scholar 

  • Vasil, V., Castillo, A.M., Fromm, M.E., Vasil, I.K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus, Bio/Technology 10, pp 667–674.

    Article  CAS  Google Scholar 

  • Wagner, A., Walden, A., Walter, C. (1996) A cDNA encoding a cinnamyl alcohol dehydrogenase (Genbank Accession No. U62394) from Pinus radiata. Plant Gene Register PGR96–097, Plant Physiology 112, pp 1397.

    Article  Google Scholar 

  • Wagner, A., Moody, J., Grace, L.J., Walter, C. (1997) Transformation of Pinus radiata based on selection with hygromycin B, New Zealand Journal of Forestry Science 27 (3): 280–288.

    CAS  Google Scholar 

  • Walden,A.R., Wang, D.Y., Walter, C., Gardner, R.C. (1997a) A large family of TM3 orthologues in Pinus radiata includes two members with deletions of the conserved K domain Plant Molecular Biology, in press

    Google Scholar 

  • Walden, A.R., Gardner, R.C., Walter, C. (1997b) Submissions of Pinus radiata male cone specific genes to the GenBank database. Accession numbers: U90345, U90346, U90347, U90348, U90349, U90344

    Google Scholar 

  • Walter, C., Broer, I., Hillemann, D., Pühler, A. (1992) High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa, Molecular and General Genetics 235, pp 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Walter, C., Smith, D.R., Connett, M.B., Grace, L., White, D.W.R. (1994). A biolistic approach for the transfer and expression of a gus reporter gene in embryogenic cultures of Pinus radiata, Plant Cell Reports 14, pp 69–74.

    Article  CAS  Google Scholar 

  • Walter,C., Grace, L.J., Wagner, A., White, D.W.R., Walden, A.R., Donaldson, S.S., Hinton, H., Gardner, R.C. and Smith, D.R. (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D Don, Plant Cell Reports 17: 460–468.

    Article  CAS  Google Scholar 

  • Wang, D.Y., Bradshaw, R.E., Walter, C., Connett, M.B., Fountain, D.W. (1997) Structural chracterisation of Pinus radiata MADS box DNA sequences isolated by PCR cloning New Zealand Journal of Forestry Sciene27(1): 3–10.

    Google Scholar 

  • Weigel, D., Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes, Cell 78, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D., Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants, Nature 377, pp 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Whetten, R., Sederoff, R. (1991) Genetic engineering of wood, For Ecol Manage 43: 301–316.

    Article  Google Scholar 

  • Wilcox, P. H., Amerson, H. V., Kuhlman, G., Liu, G. H., O’Malley, D. M., Sederoff, R. R. (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genome mapping, Proceedings of the National Academy of Science, USA 93, pp 3859–3864.

    Article  CAS  Google Scholar 

  • Wright, J.W. (1976) Introduction to Forest Genetics, Academic Press, New York.

    Google Scholar 

  • Zambryski, P.C. (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story, Annual Review of Plant Physiology and Plant Molecular Biology 43, pp 465–490.

    Article  CAS  Google Scholar 

  • Thong, H., Sun, B., Warkentin, D., Thang, S., Wu, R., Wu, T., Sticklen, M.B. (1996) The Competence of Maize Shoot Meristems for Integrative Transformation and Inherited Expression of Transgenes, Plant Physiology 110: 1097–1107.

    Google Scholar 

  • Zupan, J.R., Zambryski, P. (1995) Transfer of T-DNA from Agrobacterium to the Plant Cell, Plant Physiology 107, 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  • Zupan, J., Zambryski, P. (1997) The Agrobacterium DNA transfer complex, Critical Reviews in Plant Sciences 16 (3): 279–295.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, C., Grace, L.J. (2000). Genetic Engineering of Conifers for Plantation Forestry Pinus radiata Transformation. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2313-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2313-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5427-2

  • Online ISBN: 978-94-017-2313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics