Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Attachment of microorganisms to solid surfaces followed by biofilm formation is a well known phenomenon, which must be accounted for both in the design and operation of biotechnological processes. Sometimes biofilm formation is undesirable because it may either decrease process performance or cause damage to equipment [1]. Examples include biologically-assisted corrosion of metals and biofilm growth in water distribution and heat transfer systems. In health care, biofilm formation is linked to tooth decay and contamination of medical implants and catheters. In contrast, a large number of industrial-scale microbiological processes are dependent on biofilms. Examples of biofilm applications include such diverse areas as wastewater treatment and the food and pharmaceutical industries. Most wastewater treatment processes use biofilms (trickling filters, rotating biological contactors, fixed film reactors, anaerobic granular bed reactors) to improve biomass retention and volumetric removal rates. In bioprocessing, biofilm reactors provide high volumetric biomass density and improved operational stability [2]. Overall, the importance of biofilms in industrial processes and health care has prompted extensive experimental and theoretical studies of biofilm systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costerton, J.W.; Marrie, T.J. and Cheng, K.-J. (1985) Phenomena of bacterial adhesion. In: Savage, D. C. and Fletcher, M. (Eds.) Bacterial adhesion, Plenum Publishing Corporation, New York, NY, USA.

    Google Scholar 

  2. Iwai, S. and Kitao, T. (1994) Wastewater treatment with microbial films Technomic Publishing Co. Inc. Lancaster, PA, USA.

    Google Scholar 

  3. Characklis, W.G. (1983) Process analysis in microbial systems: biofilms as a case study. In: Bazin, M. (Eds.) Mathematics in microbiology, Academic Press. London.

    Google Scholar 

  4. Rehm, H.-J. and Omar, S.H. (1993) Special morphological and metabolic behaviour of immobilized microorganisms. In: Sahm, H. (Ed.) Biotechnology, VCH Verlagsgesellschaft mbH. Weinheim, Germany.

    Google Scholar 

  5. Fletcher, M. and Floodgate, G.D. (1976) The adhesion of bacteria to solid surfaces. In: Fuller, R. and Loverfock, D. W., (Eds.), Microbial ultrastructure, Academic Press. London.

    Google Scholar 

  6. Marshall, K.C. (1992) Biofilms an overview of bacterial adhesion, activity and control at surfaces. ASM News, 58, 202–207.

    Google Scholar 

  7. van Loosdrecht, M.C.K. and Heijnen, J.J. (1996) Biofilm processes. In: Willaert, R. G.; Baron, G. V. and De Backer, L. (Eds.) Immobilised living cell systems, J. Wiley and Sons. Chichester, UK.

    Google Scholar 

  8. Hall-Stoodley, L. and Stoodley, P. (2002) Developmental regulation of microbial biofilms. Curr. Opin. Biotech. 13: 228–233.

    Google Scholar 

  9. Schonduve, P.; Sara, M. and Friedl, A. (1996) Influence of physiologically relevant parameters on biomass formation in a tricle-bed bioreactor used for waste gas cleaning. Appl. Microbiol. Biot. 45: 286292.

    Google Scholar 

  10. Hibiya, K.; Terada, A.; Tsuneda, S. and Hirata, A. (2003) Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. J. Biotechnol. 100: 23–32.

    Article  CAS  Google Scholar 

  11. Okabe, S.; Santegoeds, C.M.; Watanabe, Y. and D., B. (2002) Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Biotechnol. Bioeng. 78: 119–130.

    Google Scholar 

  12. Rocheleau, S.; Greer, C.W.; Lawrence, J.R.; Cantin, C.; Laramee, L. and Guiot, S.R. (1999) Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl. Environ. Microbiol. 65: 2222–2229.

    Google Scholar 

  13. Bryers, J.D. (1988) Modeling biofilm accumulation. In: Bazin, M. J. and Prosser, J. I. (Eds.) Physiological models in microbiology, CRC. Boca Raton, FL.

    Google Scholar 

  14. Kappeler, J. and Gujer, W. (1994) Development of a mathematical model for aerobic bulking. Water Res. 28: 303–310.

    Article  CAS  Google Scholar 

  15. Sanz, J.P.; Freund, M. and Hother, S. (1996) Nitrification and denitrification in continuous upflow filters - process modelling and optimization. Water Sci. Technol. 34: 441–448.

    Google Scholar 

  16. Masse, D.I. and Droste, R.L. (2000) Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Wat. Res. 34: 3087–3106.

    Google Scholar 

  17. Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G. and Kleerebezem, R. (2001) Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnol. Bioeng. 73: 125–134.

    Google Scholar 

  18. Wanner, O. and Gujer, W. (1986) A multispecies biofilm model. Biotechnol. Bioeng. 28: 314–328.

    Google Scholar 

  19. Wanner, O. (1995) New experimental findings and biofilm modelling concepts. Water Sci. Technol. 32: 133–140.

    Google Scholar 

  20. Rittmann, B.E.; Stilwell, D. and Ohashi, A. (2002) The transient-state, multiple-species biofilm model for biofiltration processes. Water Res. 36: 2342–2356.

    Article  CAS  Google Scholar 

  21. Tartakovsky, B. and Guiot, S.R. (1997) Modeling and analysis of layered stationary anaerobic granular biofilms. Biotechnol. Bioeng. 54: 122–130.

    Google Scholar 

  22. Hunik, J.H.; Bos, C.G.; Hoogen, M.P.; DeGooijer, C.D. and Tramper, J. (1994) Co-immobilized Nitrosomonas europea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in k-carrageenan gel beads. Biotechnol. Bioeng. 43: 1153–1163.

    Google Scholar 

  23. Stewart, P.S. (1998) A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms Biotechnol. Bioeng. 59: 261–272.

    Article  CAS  Google Scholar 

  24. Hinson, R.K. and Kocher, W.M. (1996) Model for Effective diffusivities in aerobic biofilms. J. Environ. Eng. 122: 1023–1030.

    Google Scholar 

  25. Westrin, B.A. and Axelsson, A. (1991) Diffusion in gels containing immobilized cells: A critical review. Biotechnol. Bioeng. 38: 439–446.

    Google Scholar 

  26. Horber, C.; Christiansen, N.; Arvin, E. and Ahring, B. (1998) Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge. Appl. Environ. Microb. 64: 1860–1863.

    Google Scholar 

  27. Trulear, M.G. and Characklis, W.G. (1982) Dynamics of biofilm processes. J. WPCF 54: 1288–1301.

    CAS  Google Scholar 

  28. Morgenroth, E. and Wilderer, P.A. (2000) Influence of detachment mechanisms on competition in biofilms. Water Res. 34: 417–426.

    Article  CAS  Google Scholar 

  29. Nicolella, C.; Di Felice, R. and Rovatti, M. (1996) An experimental model of biofilm detachment in liquid fluidized bed biological reactors. Biotechnol. Bioeng. 51: 713–719.

    Google Scholar 

  30. Stewart, P.S. (1993) A model of biofilm detachment. Biotechnol. Bioeng. 41: 111–117.

    Google Scholar 

  31. Horn, H.; Neu, T.R. and Wulkow, M. (2001) Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques. Water Sci. Technol. 43: 121–127.

    Google Scholar 

  32. Soyupak, S.; Nakiboglu, H. and Surucu, G. (1990) A finite element approach for biological fluidized bed modelling. Appl. Math. Modelling 14: 258–263.

    Google Scholar 

  33. Buffiere, P.; Steyer, J.-P.; Fonade, C. and Moletta, R. (1995) Comprehensive modeling of methanogenic biofilms in fluidized bed systems: mass transfer limitations and multisubstrate aspects. Biotechnol. Bioeng. 48: 725–736.

    Google Scholar 

  34. Lanthier, M.; Tartakovsky, B.; Villemur, R.; DeLuca, G. and Guiot, S.R. (2002) Microstructure of anaerobic granules bioaugmented with Desulfitobacterium frappieri PCP-l. Appl. Environ. Microb. 68: 4035–4043.

    Google Scholar 

  35. Flora, J.R.V.; Suidan, M.T.; Biswas, P. and Sayles, G.D. (1995) A modeling study of anaerobic biofilm systems: I. Detailed biofilm modeling. Biotechnol Bioeng, 46, 43–53.

    Google Scholar 

  36. Wanner, O. and Reichert, P. (1996) Mathematical modeling of mixed-culture biotilm. Biotechnol Bioeng, 49, 172–184.

    Article  CAS  Google Scholar 

  37. Hermanowicz, S.W. (2001) A simple 2D biotilm model yields a variety of morphological features. Math. Biosci. 169: 1–14.

    Google Scholar 

  38. Kreft, J.U.; Picioreanu, C.; Wimpenny, J.W. and van Loosdrecht, M.C. (2001) Individual-based modelling of biofilms. Microbiol. ( Reading, England ) 147: 2897–2912.

    Google Scholar 

  39. Picioreanu, C.; van Loosdrecht, M.C. and Heijnen, J.J. (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58: 101–116.

    Google Scholar 

  40. Picioreanu, C.; van Loosdrecht, M.C. and Heijnen, J.J. (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol. Bioeng. 57: 718–731.

    Google Scholar 

  41. Greenberg, N.; Tartakovsky, B.; Yirme, G.; Ulitzur, S. and Sheintuch, M. (1996) Observations and modeling of growth of immobilized microcolonies of luminous E.coli. Chem. Eng. Sci. 51: 743–756.

    Google Scholar 

  42. Noguera, D.R.; Okabe, S. and Picioreanu, C. (1999) Biofilm modeling: present status and future directions. Water Sci. Technol. 39: 273–278.

    Google Scholar 

  43. Pritchett, L.A. and Dockery, J.D. (2001) Steady State Solutions of a One-Dimensional Biofilm Model. Math. Computer Modelling 33: 255–263.

    Google Scholar 

  44. Rauch, W.; Vanhooren, H. and Vanrolleghem, P.A. (1999) A simplified mixed-culture biofilm model. Water Res. 33: 2148–2162.

    Article  CAS  Google Scholar 

  45. Gupta, N.; Gupta, S.K. and Ramachandran, K.B. (1997) Modelling and simulation of anaerobic stratified biofilm for methane production and prediction of multiple steady states. Chem. Eng. J. 65: 37–46.

    Google Scholar 

  46. Droste, R.L. and Kennedy, K.J. (1986) Sequential substrate utilization and effectiveness factor in fixed bofilms Biotechnol. Bioeng. 28: 1713–1720.

    Article  CAS  Google Scholar 

  47. Flora, J.R.V.; Suidan, M.T.; Biswas, P. and Sayles, G.D. (1995) A modeling study of anaerobic biofilm systems: II. Reactor modeling. Biotechnol. Bioeng. 46: 54–61.

    Google Scholar 

  48. Arcand, Y.; Chavarie, C. and Guiot, S. (1994) Dynamic modelling of the population distribution in the anaerobic granular biofilm. Wat Sci. Technol. 30: 63–73.

    Google Scholar 

  49. Pauss, A.; Samson, R. and Guiot, S. (1990) Thermodynamic evidence of trophic microniches in methanogenic granular sludge-bed reactors. Appl. Microb. Biotechnol. 33: 88–92.

    Google Scholar 

  50. Guiot, S.R.; Pauss, A. and Costerton, J.W. (1992) A structured model of the anaerobic granule consortium. Wat Sci. Technol. 25: 1–10.

    Google Scholar 

  51. Tartakovsky, B.; Guiot, S. and Sheintuch, M. (1998) Modeling and analysis of co-immobilized aerobic/anaerobic mixed cultures. Biotechnol. Prog. 14: 672–679.

    Google Scholar 

  52. Beg, S.A. and Hassan, M.M. (1985) A biofilm model for packed bed reactors considering diffusional resistances and effects of backmixing. Chem. Eng. J. 30: BI-B8.

    Google Scholar 

  53. Lens, P.; de Beer, D.; Cronenberg, C.; Ottengraf, S. and Verstraete, W. (1995) The use of microsensors to determine population distributions in UASB aggregates. Wat Sci. Technol. 31: 273–280.

    Google Scholar 

  54. Kosaric, N. and Blaszczyk, R. (1990) The morphology and electron microscopy of microbial aggregates. In: Tyagi, R. D. and Vembu, K. (Eds.), Wastewater treatment by immobilized cells, CRC Press. Boca Raton.

    Google Scholar 

  55. Tanaka, H.; Kurosawa, H. and Murukami, H. (1986) Ethanol production from starch by coimmobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol. Bioeng. 28: 1761–1768.

    Google Scholar 

  56. Kotlar, E.; Tartakosky, B.; Argaman, Y. and Sheintuch, M. (1996) The nature of interaction between immobilized nitrification and denitrification bacteria. J. Biotechnol. 51: 251–258.

    Article  CAS  Google Scholar 

  57. Beunink, J. and Rehm, H.-J. (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl. Microbiol. Biotechnol. 29: 72–80.

    Google Scholar 

  58. Wimpenny, J.W.T. and Colasanti, R. (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton model. FEMS Microbiol. Ecol. 22: 1–16.

    Google Scholar 

  59. Viotti, P.; Eramo, B.; Boni, M.R.; Carruci, A.; Leccese, M. and Sbaffoni, S. (2002) Development and calibration of a mathematical model for the simulation of the biofiltration process. Adv. Environ. Res. 7: 1 133.

    Article  Google Scholar 

  60. Vanhooren, H.; Verbrugge, T.; Boeije, G.; Demey, D. and Vanrolleghem, P.A. (2001) Adequate model complexity for scenario analysis of VOC stripping in a trickling filter. Water Sei. Technol. 43: 29–38.

    Google Scholar 

  61. Smets, B.F.; Riefler, R.G.; Lendenmann, U. and Spain, J.C. (1999) Kinetic analysis of simultaneous 2,4dinitrotoluene (DNT) and 2, 6-DNT biodegradation in an aerobic fluidized-bed biofilm reactor. Biotechnol. Bioeng. 63: 642–653.

    Google Scholar 

  62. Van Loosdrecht, M.C.M.; Picioreanu, C. and Heijnen, J.J. (1997) A more unifying hypothesis for biotilm structures. FEMS Microbiol. Ecol. 24: 181–183.

    Google Scholar 

  63. Stewart, P.S. (1994) Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms Antimicrob. Agents Ch. 38: 1052–1058.

    Article  CAS  Google Scholar 

  64. Dodds, M.G.; Grobe, K.J. and Stewart, P.S. (2000) Modeling biofilm antimicrobial resistance. Biotechnol. Bioeng. 68: 456–465.

    Google Scholar 

  65. Dainson, B.E.; Tartakovsky, B.; Scheintuch, M. and Lewin, D.R. (1995) Variable structure models in process observation and control. Ind. Eng. Chem. Res. 34: 3008–3013.

    Google Scholar 

  66. Tartakovsky, B.; Morel, E.; Steyer, J.-P. and Guiot, S.R. (2002) Application of a variable structure model in observation and control of an anaerobic digestor. Biotechnol. Prog. 18: 898–903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tartakovsky, B., Guiot, S.R. (2004). Biofilm Modelling. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics