Skip to main content

Short-Term Measurement of Heart Rate Variability

  • Chapter

Abstract

The heart is an organ with rich innervation from the parasympathetic and sympathetic limbs of the autonomic nervous system. Although the heart is capable of intrinsic regulation of cardiac rhythm, electrical conduction and contractility, those functions are largely under the control of autonomic nervous system. Particularly, autonomic nervous system is responsible for rapid regulation of cardiac rhythm and pump function in order to match cardiac output with the body needs during various exogenic stimuli of daily life — physical and mental stress, posture changes, etc. Sino-atrial node and atrioventricular node receive both parasympathetic and sympathetic efferent innervation, whereas in the ventricles efferent neural connections are almost solely of sympathetic origin.1 In addition to efferent innervation, the heart has afferent autonomic receptors, which subserve various reflexes originating from the heart.2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Randall WC, Ardell JL. Functional anatomy of the cardiac efferent innervation. In: Kulbertus HE, Franck G (Eds) Neurocardiology. Futura, Mount Kisco 1988, 3–24.

    Google Scholar 

  2. Hainsworth R. The control and physiologic importance of heart rate. In: Malik M, Camm AJ (Eds) Heart rate variability. Futura, Armonk 1995, 320.

    Google Scholar 

  3. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation I. Canine atrial rate response. Ana J Physiol 1989; 256: H142 — H152.

    CAS  Google Scholar 

  4. 4 Kautzner J, Fiala M, Hartikainen JEK, Hnatkova K, Rowland E, Camm AJ, Malik M. Autonomic modulation of the atrioventricular conduction and its influence on the measurement of heart rate variability. Submitted.

    Google Scholar 

  5. Task Force for The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, pysiological interpretation, and clinical use. Circulation, 1996: 93: 1043–1065.

    Article  Google Scholar 

  6. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985; 8: 491–498.

    Article  PubMed  CAS  Google Scholar 

  7. Ori Z, Monir G, Weiss J. Sayhouni X, Singer D. Heart Rate Variability: Frequency Domain Analysis. Ambulatory Electrocardiography 1992; 10: 499537.

    Google Scholar 

  8. Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long term heart rate variability: methods, 1/f scaling and implications. In: Computers in Cardiology 1987. IEEE Computer Society press, Washington 1988, 419–422.

    Google Scholar 

  9. Pinna GD, Maestri R, Di Cesare A, Colombo R, Minuco G. The accuracy of power spectrum analysis of heart rate variability from annotated RR list generated by Holter systems. Physiol Meas 1994; 15: 163–179.

    Article  PubMed  CAS  Google Scholar 

  10. Merri M, Farden DC, Mottley JG, Titlebaum EL. Sampling frequency of the electrocardiogram for the spectral analysis of heart rate variability. IEEE Trans Biomed Eng 1990; 37: 99–106.

    Article  PubMed  CAS  Google Scholar 

  11. Bianchi AM, Mainardi LT. Petrucci E, Signorini MG, Mainardi M, Cerrutti S. Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE Trans Biomed Eng 1993; 40: 136–144.

    Article  PubMed  CAS  Google Scholar 

  12. Bendat JS, Piersol AG. Measurement and analysis of random data. New York: Wiley, 1966.

    Google Scholar 

  13. Welch WJ, Smith ML, Rea RF, Bauernfeind RA, Eckberg DL. Enhancement of sympathetic nerve activity by single premature ventricular beats in humans. JAm Coll Cardiol 1989: 13: 69–75.

    Article  CAS  Google Scholar 

  14. Malik M, Cripps T, Farrel, Camm J. Prognostic value of heart rate variability after myocardial infarction — a comparison of different data processing methods. Med Biol Eng Comput 1989; 27: 603–611.

    Google Scholar 

  15. Kamath MV, Fallen EL. Correction of the heart rate variability signal for ectopics and missing beats. In: Malik M, Camm AJ (Eds) Heart rate variability. Futura, Armonk 1995, 75–85.

    Google Scholar 

  16. Kleiger RE, Miller JP, Bigger JT, Moss AJ, and the Multicenter post-infarction research group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987; 59: 256–262.

    Article  Google Scholar 

  17. Heslegrave RJ, Ogilvie JC, Furedy JJ. Measuring baseline-treatment differences in heart rate variability: variance versus successive difference mean square and beats per minute versus interbeat intervals. Psychophysiology 1979; 16: 151–157.

    Article  PubMed  CAS  Google Scholar 

  18. Bigger JT, Albrecht P, Steinman RC, Rolnitsky LM, Fleiss JL, Cohen RJ. Comparison of time and frequency-domain based measures of cardiac parasympathetic activity in Holter recordings after myocardial infarction. Am J Cardiol 1989; 64: 536–538.

    Article  PubMed  Google Scholar 

  19. Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL. Stability over time of variables measuring heart rate variability in normal subjects. Ain J Cardiol 1991: 68: 626–630.

    Article  CAS  Google Scholar 

  20. Malik, Farrell T, Cripps T, Camm AJ. Heart rate variability in relation to prognosis after myocardial infarction — selection of optimal processing techniques. Eur Heart J 1989; 10: 1060–1074.

    Google Scholar 

  21. Farrell T, Bashir Y, Cripps, Malik M, Poloniecki J, Bennett ED, Ward DE, Camm AJ. Risk stratification for arrhythmic events in post-infarction patients based on heart rate variability and signal averaged ECG. JAin Coll Cardiol 1991; 18: 687–697.

    Article  CAS  Google Scholar 

  22. Björkander I, Held C, Forslund L, Eriksson S, Billing E, Hjemdahl P, Rehnqvist N. Heart rate variability in patients with stable angina pectoris. Eiar Heart J 1992; 13: 379.

    Google Scholar 

  23. Woo MA, Stevenson WG, Moser DK. Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. J Ain Coll Cardiol 1994; 23: 565–569.

    Article  CAS  Google Scholar 

  24. Malik M. Geometrical methods for heart rate variability assessment. In: Malik M, Camm AJ (Eds) Heart rate variability. Futura, Armonk 1995, 4761.

    Google Scholar 

  25. Hales S. Haemasticks. In: Hales S (Ed) Statistical Essays. Innys and Manby, London 1933, 1–86.

    Google Scholar 

  26. Penaz J, Roukenz J. Ban der Waal HJ. Spectral analysis of some spontaneous rhyhms in the circulation. In: Drischel H, Tiedt N (Eds) Biokybernetik Bd. I. Karl Marx University, Leipzig 1968, 233.

    Google Scholar 

  27. Axelrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science 1981; 213: 220–222.

    Article  Google Scholar 

  28. Sayers B, Mc A. Analysis of heart rate variability. Ergonomics 1973; 16: 8597.

    Google Scholar 

  29. Akaike H. Statistical prediction identification. Ann bast Statist Math 1970; 22: 203–217.

    Article  Google Scholar 

  30. di Rienzo M, Castiglioni P, Mancia G, Parati G, Pedotti A. 24 h sequential spectral analysis of arterial blood pressure and pulse interval in free-moving subjects. IEEE Traits Biomed Eng 1989; 36: 1066–1075.

    Article  Google Scholar 

  31. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerrutti S Malliani A. Power spectral analysis of beat-to-beat heart rate and blood pressure variability as a possible marker of sympatho-vagal interaction in man and conscious dogs. Circ Res 1986; 59: 178–193.

    Article  PubMed  CAS  Google Scholar 

  32. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482–492.

    Article  PubMed  CAS  Google Scholar 

  33. Levy MN, Martin PJ, Iano T. Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am J Physiol 1970; 218: 1256–1262.

    PubMed  CAS  Google Scholar 

  34. Furnival CM, Linden RJ, Snow HM. Chronotropic and inotropic effects on the dog heart of stimulating the efferent cardiac sympathetic nerves. J Physiol 1973; 230: 137–153.

    PubMed  CAS  Google Scholar 

  35. Hedman AE, Tahvanainen KUO, Hartikainen JEK, Hakumäki MOK. Effect of sympathetic modulation and sympathovagal interaction on heart rate variability in anaesthetized dogs. Acta Physiol Scand 1995; 155: 205–214.

    Article  PubMed  CAS  Google Scholar 

  36. Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. JAppl Physiol 1975; 39: 801–805.

    CAS  Google Scholar 

  37. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. JAppl Physiol 1983; 54: 961–966.

    CAS  Google Scholar 

  38. Hirsch JB, Bishop B. Respiratory sinus arrhythmia in humans. How breathing pattern modulates heart rate. Ant J Physiol 1981; 241: H620 - H6219.

    CAS  Google Scholar 

  39. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largerly ignored. J Appl Physiol 1993; 75: 2310–2317.

    PubMed  CAS  Google Scholar 

  40. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Ant J Physiol 1991; 261: H1231 - H1245.

    CAS  Google Scholar 

  41. Hedman AE, Hartikainen JEK, Tahvanainen KUO, Hakumäki MOK. Power spectral analysis of heart rate and blood pressure variability in anesthetized dogs. Acta Physiol Scand 1992; 146: 155–164.

    Article  PubMed  CAS  Google Scholar 

  42. Pomeranz B, Macaulay RJB, Caudill MA, Kutz I, Adam D, Gordon D. Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248: H151 - H153.

    CAS  Google Scholar 

  43. Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol Load 1994; 474: 483–495.

    CAS  Google Scholar 

  44. Saul JP, Rea RF, Eckberg DL, Berger RD, Cohen RJ. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am J Physiol 1990; 258: H713 - H721.

    PubMed  CAS  Google Scholar 

  45. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 1994; 90: 234–240.

    Article  PubMed  CAS  Google Scholar 

  46. Fagius J, Sundlöv G. The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles. J Physiol Load 1986; 377: 429443.

    Google Scholar 

  47. Eckberg DL. Sympathovagal balance. A critical. appraisal. Circulation 1997; 96: 3224–3232.

    Article  PubMed  CAS  Google Scholar 

  48. Kitney RI, Rompelman O. Analysis of the human blood pressure and thermal control systems. In: Perkins J (Ed) Biochemical Computing. Pitman Medical, London 1977, 49–50.

    Google Scholar 

  49. Bernardi L, Valle F, Coco M. Physical activity is a major determinant of heat rate variability, its ‘very low’ frequency component and 1/f (chaotic) distrubution. Eur Heart J 1994; 15: 242.

    Article  Google Scholar 

  50. Furlan R, Guzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, Cerutti S, Lombardi F, Pagani M, Malliani A. Continuous 24-hour assessment of the nerual regulation of systemic arterial pressure and RR variabilities in ambulatory patients. Circulation 1990; 81: 537–547.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hartikainen, J.E.K., Tahvanainen, K.U.O., Kuusela, T.A. (1998). Short-Term Measurement of Heart Rate Variability. In: Malik, M. (eds) Clinical Guide to Cardiac Autonomic Tests. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1057-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1057-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5071-7

  • Online ISBN: 978-94-017-1057-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics