Skip to main content

Biological N2 Fixation in wetland rice fields: Estimation and contribution to nitrogen balance

  • Chapter
Biological Nitrogen Fixation for Sustainable Agriculture

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 49))

Abstract

This paper 1) reviews improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils, 2) summarizes earlier quantitative estimates and recent data, and 3) discusses the contribution of BNF to N balance in wetland-rice culture.

Measuring acetylene reducing activity (ARA) is still the most popular method for assessing BNF in rice fields. Recent studies confirm that ARA measurements present a number of problems that may render quantitative extrapolations questionable. On the other hand, few comparative measures show ARA’s potential as a quantitative estimate. Methods for measuring photodependent and associative ARA in field studies have been standardized, and major progress has been made in sampling procedures. Standardized ARA measurements have shown significant differences in associative N2 fixation among rice varieties.

The 15N dilution method is suitable for measuring the percentage of N derived from the atmosphere (% Ndfa) in legumes and rice. In particular, the 15N dilution technique, using available soil N as control, appears to be a promising method for screening rice varieties for ability to utilize biologically fixed N. Attempts to adapt the 15N dilution method to aquatic N2 fixers (Azolla and blue-green algae [BGA]) encountered difficulties due to the rapid change in 15N enrichment of the water.

Differences in natural 15N abundance have been used to show differences among plant organs and species or varieties in rice and Azolla, and to estimate Ndfa by Azolla, but the method appears to be semi-quantitative.

Recent pot experiments using stabilized 15N-labelled soil or balances in pots covered with black cloth indicate a contribution of 10–30 kg N ha −1 crop−1 by heterotrophic BNF in flooded planted soil with no or little N fertilizer used.

Associative BNF extrapolated from ARA and 15N incorporation range from 1 to 7 kg N ha −1 crop−1. Straw application increases heterotrophic and photodependent BNF. Pot experiments show N gains of 2–4 mg N g−1 straw added at 10 tons ha−1.

N2 fixation by BGA has been almost exclusively estimated by ARA and biomass measurements. Estimates by ARA range from a few to 80 kg N ha−1 crop−1 (average 27 kg). Recent extensive measurements show extrapolated values of about 20 kg N ha−1 crop−1 in no-N plots, 8 kg in plots with broadcast urea, and 12 kg in plots with deep-placed urea.

Most information on N2 fixed by Azolla and legume green manure comes from N accumulation measurements and determination of % Ndfa. Recent trials in an international network show standing crops of Azolla averaging 30–40 kg N ha−1 and the accumulation of 50–90 kg N ha−1 for two crops of Azolla grown before and after transplanting rice. Estimates of % Ndfa in Azolla by 15N dilution and delta 15N methods range from 51 to 99%. Assuming 50–80% Ndfa in legume green manures, one crop can provide 50–100 kg N ha−1 in 50 days. Few balance studies in microplots or pots report extrapolated N gains of 150–250 kg N ha−1 crop−1.

N balances in long-term fertility experiments range from 19 to 98 kg N ha−1 crop−1 (average 50 kg N) in fields with no N fertilizer applied. The problems encountered with ARA and 15N methods have revived interest in N balance studies in pots. Balances are usually highest in flooded planted pots exposed to light and receiving no N fertilizer; extrapolated values range from 16 to 70 kg N ha−1 crop−1 (average 38 kg N). A compilation of balance experiments with rice soil shows an average balance of about 30 kg N ha−1 crop−1 in soils where no inorganic fertilizer N was applied.

Biological N2 fixation by individual systems can be estimated more or less accurately, but total BNF in a rice field has not yet been estimated by measuring simultaneously the activities of the various components in situ. As a result, it is not clear if the activities of the different N2-fixing systems are independent or related. A method to estimate in situ the contribution of N2 fixed to rice nutrition is still not available. Dynamics of BNF during the crop cycle is known for indigenous agents but the pattern of fixed N availability to rice is known only for a few green manure crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando S 1975 Effect of crude organic matter applied to the excessively draining low-yield paddy field. Bull. Kagawa Agric. Expt. Stn. 27, 1-81. (In Japanese, English summary).

    Google Scholar 

  • App A A, Watanabe I, Alexander M, Ventura W, Daez C, Santiago T and De Datta S K 1980 Nonsymbiotic nitrogen fixation associated with the rice plant in flooded soils. Soil Sci. 130, 283–289.

    Article  CAS  Google Scholar 

  • App A A, Watanabe I, Santiago-Ventura T, Bravo M and Daez-Jurey C 1986 The effect of cultivated and wild rice varieties on the nitrogen balance of flooded soil. Soil Sci. 141, 448–452.

    Article  Google Scholar 

  • App A, Santiago T, Daez C, Menguito C, Ventura W, Tirol A, Po J, Watanabe I, De Datta S K and Roger P 1984 Estimation of the nitrogen balance for irrigated rice and the contribution of phototrophic nitrogen fixation. Field Crops Res. 9, 17–27.

    Article  Google Scholar 

  • Barraquio W L, Daroy M L G, Tirol A C, Ladha J K and Watanabe I 1986 Laboratory acetylene reduction assay for relative measurement of N2-fixing activities associated with field-grown wetland rice plants. Plant and Soil 90, 359–372.

    Article  CAS  Google Scholar 

  • Becker M, Ladha J K and Ottow J C G 1990 Growth and N2-fixation of two stem-nodulating legumes and their effect as green manure on lowland rice. Soil Biol. Biochem. 22, 1109-1119.

    Google Scholar 

  • Bray F 1986 The Rice Economies, Technology and Development in Asian Societies. Basil Blackwell. 254 p.

    Google Scholar 

  • De P K and Sulaiman M 1950 The influence of algal growth in the rice fields on the yield of crops. Indian J. Agric. Sci. 20, 327–342.

    Google Scholar 

  • Eskew D L 1987 Use of i5N in N,-fixation and N cycling studies of Azolla. In Azolla Utilization. pp 233–239. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Firth P, Thitipoca H, Suthipradit S, Wetselaar R and Beech D F 1973 Nitrogen balance studies in the central plains of Thailand. Soil Biol. Biochem. 5, 41-46.

    Google Scholar 

  • Greenland D J and Watanabe I 1982 The continuing nitrogen enigma. Trans. Int. Congr. Soil Sci, New Delhi 5, 123–137.

    Google Scholar 

  • Hardarson G, Danso S K A and Zapata F 1988 Dinitrogen fixation measurements in alfalfa-ryegrass swards using i5N and influence of the reference crop. Crop Sci. 28, 101–105.

    Article  Google Scholar 

  • Hardy R W F, Burns R C and Holsten R D 1973 Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47-81.

    Google Scholar 

  • Hirota Y, Fujii T, Sano Y and Iyama S 1978 N2-fixation in the rhizosphere of rice. Nature, London 276, 416-417.

    Google Scholar 

  • Inatsu O and Watanabe K 1969 Changes of fertility in peaty paddy soils in Sorachi district. Hokuno 36, 31-38. (cited by Greenland and Watanabe, 1982 ). (In Japanese).

    Google Scholar 

  • Inubushi K and Watanabe I 1986 Dynamics of available nitrogen in paddy soils. II. Mineralized N of chloroform-fumigated soil as a nutrient source for rice. Soil Sci. Plant Nutr. 32, 561–577.

    Article  CAS  Google Scholar 

  • IRRI 1989a IRRI Toward 2000 and Beyond. Manila, Philippines. 72 p.

    Google Scholar 

  • IRRI 1989b Photodependent nitrogen fixation and photosynthetic aquatic biomass. In Annual Report for 1988. pp 347–353. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Konishi C and Seino K 1961 Studies on the maintenance-mechanism of paddy soil fertility in nature. Bull. Hokuriku Agric. Exp. Stn. 2 Niigata Prefecture. 41 p. (In Japanese, English summary).

    Google Scholar 

  • Koyama T and App A A 1979 Nitrogen balance in flooded rice field. In Nitrogen and Rice. pp 95-104. The International Rice Research Institute, Los Banos, Philippines. Kulasooriya S A, Senviratne P R G, De Silva W S A G, Abeysekera S W, Wijesundara C and De Silva A P 1988

    Google Scholar 

  • Isotopic studies on N2-fixation in Azolla and the availability of its nitrogen to rice. Symbiosis 6, 151-166.

    Google Scholar 

  • Ladha J K and Boonkerd N 1988 Biological nitrogen fixation by heterotrophic and phototrophic bacteria in association with straw. In Proceedings of the First International Symposium on Paddy Soil Fertility, Chiangmai, Thailand, 6-13 December 1988. pp 173–187. ISSS, Paddy Soil Fertility Group.

    Google Scholar 

  • Ladha J K and Tirol-Padre A 1990 Standardization of acetylene reduction assay with field grown aquatic legume. Int. Rice Res. Newsl. 15, 16–17.

    Google Scholar 

  • Ladha J K, Miyan S and Garcia M 1988a Sesbania rostrata as green manure for lowland rice: Growth, N2-fixation, Azorhizobium sp. inoculation, and effects on succeeding crop yields and nitrogen balance. Biol. Fert. Soils 7, 191-197.

    Google Scholar 

  • Ladha J K, Padre A T, Punzalan G C, Watanabe I and De Datta S K 1988b Ability of wetland rice to stimulate biological nitrogen fixation and utilize soil nitrogen. In Nitrogen Fixation: Hundred Years After. Eds. H Bothe, F J de Bruijn and W E Newton, pp 747–752. Gustav Fischer, Stuttgart, New York.

    Google Scholar 

  • Ladha J K, Tirol-Padre A, Punzalan G C and Watanabe I 1987 Nitrogen-fixing (C2112-reducing) activity and plant growth characters of 16 wetland rice varieties. Soil Sci. Plant Nutr. 33, 187-200.

    Google Scholar 

  • Ladha J K, Watanabe I and Saono S 1988c Nitrogen fixation by leguminous green manure and practices for its enhancement in tropical lowland rice. In Sustainable Agriculture: Green Manure in Rice Farming. pp 165–183. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Ledgard S F, Simpson J R, Freney J R and Bergersen F J 1985 Assessment of the relative uptake of added and indigenous soil nitrogen by nodulated legumes and reference plants in the 15N dilution measurement of N, fixation: Glasshouse application of method. Soil Biol. Biochem. 17, 323-328.

    Google Scholar 

  • Lee K K, Alimagno B V and Yoshida T 1977 Field technique using the acetylene reduction method to assay nitrogenase activity and its association with rice rhizosphere. Plant and Soil 47, 519–526.

    Article  CAS  Google Scholar 

  • Li Zhuo-Xin, Zu Shou-Xian, Mao Mei-Fei, Wang Fu-Lai and Zhao Bing-Bo 1987 Determination of amount of N,-fixation and change in N2-fixing activity of Azolla in natural environment. In Azolla Utilization. pp 223-231. The International Rice Research Institute, Los Banos, Philippines. Ndoye I and Dreyfus B 1988 N2-fixation by Sesbania rostrata and Sesbania sesban estimated using 15N and total N difference methods. Soil Biol. Biochem. 20, 209-213. Pareek R P, Ladha J K and Watanabe I 1990 Estimation of N,-fixation by Sesbania rostrata and S. cannabina in lowland rice soil by 15N dilution method. Biol. Fert. Soils 10, 77–88.

    Google Scholar 

  • Peoples M B and Herridge D F 1990 Nitrogen fixation by legumes in tropical and sub-tropical agriculture. Adv. Agron. 44, 155–223.

    Article  CAS  Google Scholar 

  • Peterson R B and Burris R H 1976 Conversion of acetylene reduction rate to nitrogen fixation rates in natural populations of blue-green algae. Anal. Biochem. 73, 404-410. Postgate J 1990 Fixing the nitrogen fixers. New Scientist, 3 February 1990, 57–61.

    Google Scholar 

  • Rinaudo G, Alazard D and Moudiongui A 1988 Stemnodulating legumes as green manure for rice in West Africa. In Green Manure in Rice Farming. pp 97–109. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Roger P A 1991 Blue-green algae in agriculture. In Microorganisms that Promote Plant Productivity. Eds. J O Dawson and P J Dart. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Roger P A and Kulasooriya S A 1980 Blue-green algae and rice. The International Rice Research Institute, Los Banos, Philippines. 112 p.

    Google Scholar 

  • Roger P A and Watanabe I 1986 Technologies for utilizing biological nitrogen fixation in wetland rice: Potentialities, current usage, and limiting factors. Fert. Res. 9, 39–77.

    Article  Google Scholar 

  • Roger P A, Jimenez R and Santiago-Ardales S 1991 Methods for studying blue-green in ricefields: distributional ecology, sampling strategies, and estimation of abundance. IRRI Research Paper Series no. 150. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Roger P A, Reddy P M and Remulla-Jimenez R 1988 Photodependent acetylene reducing activity (ARA) in ricefields under various fertilizer and biofertilizer management. In Nitrogen Fixation: Hundred Years After. Eds. H Bothe, F J de Bruijn and W E Newton. p 827. Gustav Fischer, Stuttgart, New York.

    Google Scholar 

  • Roger P A, Reynaud P A and Monniaux G 1978 Normalisation des données et calcul de la précision des mesures en microbiologie du sol (Normalization of data and calculation of the accuracy of measurements in soil microbiology). Cah. ORSTOM, Ser. Biol. 13, 171-180.

    Google Scholar 

  • Sano Y, Fujii T, Iyama S, Hirota Y and Komagata K 1981 Nitrogen fixation in the rhizosphere of cultivated and wild rice strains. Crop Sci. 21, 758–761.

    Article  CAS  Google Scholar 

  • Santiago-Ventura T, Bravo M, Daez C, Ventura W, Watanabe I and App A A 1986 Effects of N fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant and Soil 93, 405–411.

    Google Scholar 

  • Singh A L and Singh P K 1987 Nitrogen fixation and balance studies of rice soil. Biol. Fert. Soils 4, 15–19.

    Google Scholar 

  • Tirol-Padre A, Ladha J K, Punzalan G C and Watanabe I 1988 A plant sampling procedure for acetylene reduction assay to detect rice varietal differences in ability to stimulate N,-fixation. Soil Biol. Biochem. 20, 175-183.

    Google Scholar 

  • Trolldenier G 1987 Estimation of associative nitrogen fixation in relation to water regime and plant nutrition in a longterm pot experiment with rice. Biol. Fert. Soils 5, 133-140. Turner G L and Gibson A H 1980 Measurement of di-nitrogen fixation by direct means. In Methods for Evaluating Biological Nitrogen Fixation. Ed. F J Bergersen. pp 111–138. Wiley, New York.

    Google Scholar 

  • Wagner G H and Zapata F 1982 Field evaluation of reference crops in the study of nitrogen fixation by legumes using isotope techniques. Agron. J. 74, 607–612.

    Article  Google Scholar 

  • Watanabe I 1982 Azolla-Anabaena symbiosis — its physiology and use in tropical agriculture. In Microbiology of Tropical Soil and Plant Productivity. Eds. Y Dommergues and H S Diem. pp 169–185. Martinus Nijhoff Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Watanabe I 1987 Summary report of the Azolla program of

    Google Scholar 

  • the International Network on Soil Fertility and Fertilizer Evaluation for Rice. In Azolla Utilization. pp 197-205. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Watanabe I and Cabrera D R 1979 Nitrogen fixation associated with the rice plant grown in water culture. Appl. Environ. Microbiol. 37, 373–378.

    CAS  Google Scholar 

  • Watanabe I and Cholitkul W 1979 Field studies on nitrogen fixation in paddy soils. In Nitrogen and Rice. pp 223–239. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Watanabe I and Roger P A 1982 Use of 15N in the study of biological nitrogen fixation in paddy soils at the International Rice Research Institute. In Proceedings of the Consultants Meeting, FAO/IAEA Joint Project, Vienna. pp 81–98.

    Google Scholar 

  • Watanabe I and Roger P A 1984 Nitrogen fixation in wetland rice fields. In Current Development in Biological Nitrogen Fixation. Ed. N S Subba Rao. pp 237–276. Oxford and IBH Pub Co., New Delhi.

    Google Scholar 

  • Watanabe I, Yoneyama T, Padre B and Ladha J K 1987 Difference in natural abundance of 15N in several rice (Oryza sativa L.) varieties: Application for evaluating N,-fixation. Soil Sci. Plant Nutr. 33, 407-415.

    Google Scholar 

  • Watanabe I, Yoneyama T, Talukdar H and Ventura W 1992 The contribution of atmospheric N2 to Azolla spp. grown in flooded soils. Soil Sci. Plant Nutr. 37, 101-109.

    Google Scholar 

  • Willis W H and Green V E 1948 Movement of nitrogen in flooded soils planted to rice. Soil Sci. Soc. Am. Proc. 13, 229–237.

    Google Scholar 

  • Witty J F 1983 Estimating N,-fixation in the field using 15N-labelled fertilizer: Some problems and solutions. Soil Biol. Biochem. 15, 631–639.

    Google Scholar 

  • Yoneyama T 1990 Use of natural 15N abundance for evaluation of N,-fixation by legumes and Azolla in remote fields. Vol IV. pp 126-130. Proc. 14th International Congress of Soil Science, Kyoto, Japan.

    Google Scholar 

  • Yoneyama T, Ladha J K and Watanabe I 1987 Nodule bacteroids and Anabaena: Natural 5N enrichment in the legume-rhizobium and Azolla-Anabaena symbiotic systems. J. Plant Physiol. 127, 251–259.

    Article  CAS  Google Scholar 

  • Yoshida T and Rinaudo G 1982 Heterotrophic N,-fixation in paddy soils. In Microbiology of Tropical Soils and Plant Productivity. Eds. Y R Dommergues and H G Diem. pp 75–107. Martinus Nijhoff/Dr W Junk, Publishers, The Hague, The Netherlands.

    Chapter  Google Scholar 

  • Zhu Zhao-liang, Liu Chong-gun and Jiang Bai-fan 1984 Mineralization of organic nitrogen, phosphorus, and sulfur in some paddy soils of China. In Organic Matter and Rice. pp 259–272. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roger, P.A., Ladha, J.K. (1992). Biological N2 Fixation in wetland rice fields: Estimation and contribution to nitrogen balance. In: Ladha, J.K., George, T., Bohlool, B.B. (eds) Biological Nitrogen Fixation for Sustainable Agriculture. Developments in Plant and Soil Sciences, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0910-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0910-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4164-7

  • Online ISBN: 978-94-017-0910-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics