Skip to main content

Land-Use Change, Climate and Hydrology

  • Chapter
Global Environmental Change and Land Use
  • 220 Accesses

Abstract

Any particular form of land use has direct effects on the way water is used in a particular area and thus also on the hydrology of that area. A particularly well-known example is the high water use of forest compared to grassland. Water use refers of course to the quantitative aspects, i.e., the availability of water. But increasingly so it also refers to the quality of the water: not all water is suited for the purpose intended. At present the standards for water quality as used in different regions, for instance in Europe, vary by several orders of magnitude. Although apparently water quality becomes more and more an issue in the political and practical sense, the main claim for water is still being made by agricultureagriculture, where at present the quantitative demand is still of more concern than quality. We therefore focus in this chapter primarily on the quantitative aspects of hydrology and land use and land-use change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avissar, R. and Liu, Y. (1996) Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res. 101 (D3), 7499–7518.

    Article  Google Scholar 

  • Beschta, R.L., Pyles, M.R., Skaugset, A.E. and Surfleet, C.G. (2000) Peakflow responses to forest practises in the western cascades of Oregon, USA. J. Hydrol. 233, 102–130.

    Article  Google Scholar 

  • Blyth, E.M., Dolman, A.J. and Noilhan, J. (1994) The effect of forest on mesoscale rainfall. An example from HAPEX-MOBILHY. J. Appl. Meteorol. 33, 445–454.

    Article  Google Scholar 

  • Bonell, M. (1998) Possible impacts of climate variability and change on tropical forest hydrology. Climate Change 39, 215–272.

    Article  Google Scholar 

  • Bosch, J.M. and Hewlett, J.D. (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23.

    Article  Google Scholar 

  • Brattsev, S.A. (1979) Hydrologic role of the forest in the Komi ASSR. Soviet Hydrology: Selected Papers. Vol. 18 No 2, 127–133.

    Google Scholar 

  • Cubasch, U., Voss, R. and Mikolajewiscz, U. (2000) Precipitation: A parameter changing climate and modified by climate change. Climatic Change 46, 257–276.

    Article  CAS  Google Scholar 

  • De Wit, M., Warmerdam, P., Torfs, P., Uijlenhoet, R., Roulin, E., Cheymol, A., van Deursen, W., van Walsum, P., Kwadijk, J., Ververs, M. and Buitenveld, H. (2001) Effect of climate change on the hydrology of the river Meuse. NOP-report (in prep.)

    Google Scholar 

  • Dolman, A.J., Silva Dias, M. A., Calvet, J.C., Ashby, M., Tahara, A.S., Delire, C., Kabat, P., Fisch, G.A., Nobre, C.A. (1999) Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies. Ann. Geophysicae 17, 1095–1110.

    Article  Google Scholar 

  • Dolman, A.J., Soet, M., Van den Hurk, B.J.J.M., Ijpelaar, R.J.M. and Ronda, R.J. (2001) The representation of the seasonal hydrological cycle in a regional climate model in West Europe. In: Dolman, A.J., Hall, A.J., Kavvas, M.L., Oki, T. and Pomeroy, J.W. (eds.). Soil-Vegetation-Atmosphere Transfer Schemes and Large-Scale Hydrlogical Models. IAHS Publication No. 270, 11–18.

    Google Scholar 

  • Folland, C.K., Karl, T.R., Christy, J.R., Clarke, R.A., Gruza, G.V., Jouzel, J., Mann, M.E., Oerlemans, J., Salinger, M.J. and Wang, S.-W. (2001) Observed Climate Variability and Change. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A. (eds.). Climate Change 2001: The Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, University Press, 99–181.

    Google Scholar 

  • Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J.-L., Fairhead, L., LeTreut, H., Monfray, P. and Orr, J. (2001) Positive feedback between future climate change and the carbon cycle. Geophysical Research Letters 28 (8), 1543–1546.

    Article  CAS  Google Scholar 

  • Greenwood, E.A.N. (1992) Water use by eucalypts-measurements and implications for Australia and India. In: Calder, I. R., Hall, R. L. and Adlard, P. G. (eds.). Growth and Water Use of Forest Plantations, Wiley, Chichester, UK, 298–300.

    Google Scholar 

  • Harding, R.J. (1992) The modification of climate by forests. In: Calder, I.R., Hall, R.L. and Adlard, P.G. (eds.). Growth and Water Use of Forest Plantations, Wiley, Chichester, UK, 332–346.

    Google Scholar 

  • Hibbert, A.R. (1967) Forest treatment effects on water yield. In: Sopper, W.E. and Lull, H.W. (eds.). Forest Hydrology. Pergamon Press, Oxford, 536–538.

    Google Scholar 

  • Jarvis, P.G., James, G.B., and Landsberg, J.J. (1976). Coniferous Forest. In: Monteith, J.L. (ed.), Vegetation and the Atmosphere 2. Academic Press, London, 171–240.

    Google Scholar 

  • Lean, J. and Rowntree, P. (1993) A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Q.J.R. Meterol. Soc. 119, 509–530.

    Google Scholar 

  • Lill, V.W.S., Kruger, F.J. and Wyk, V.D.B. (1980) The effect of afforestation with Eucalyptus Grandis Hill Ex Maiden and Pinus Patula Schlecht-Et Cham. On streamflow from experiment catchments of Mokobulaan, Transvaal. J. Hydrol. 48, 107–118.

    Article  Google Scholar 

  • Lockwood, J.G. (1999) Is potential evapotranspiration and its relationship with actual evapotranspiration sensitive to elevated atmospheric CO2 levels? Climate Change 41, 193–212.

    Article  CAS  Google Scholar 

  • Martin, P. (1989) The significance of radiative coupling between vegetation and the atmosphere. Agric. For. Meteorol. 49, 45–53.

    Article  Google Scholar 

  • Matheussen B., Kirschbaum, R.L., Goodman, I.A., O’Donnell, G.M. and Lettenmaier, D.P. (2000) Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Hydrol. Process. 14, 867–885.

    Article  Google Scholar 

  • McKenney, M.S. and Rosenberg, N.J. (1993) Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. For. Meteorol. 64, 81–110.

    Article  Google Scholar 

  • Mooney, H.A., Canadell, J., Chapin III, F.S., Ehleringer, J.R., Korner, Ch., McMurtrie, R.E., Parton, W.J., Pitelka, L.F. and Schulze, E.D. (1999) Ecosystem physiology responses to global change. In: Walker, B., Steffen, W., Canadell, J. and Ingram, J. (eds.). The terrestial biosphere and global change. Implications for natural and managed ecosystems. International geosphere-biosphere programme book series. Cambridge: University Press.

    Google Scholar 

  • Murakami, S., Tsuboyama, Y., Shimizu, T., Fujieda, M. and Noguchi, S. (2000) Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment. J. Hydrol. 227, 114–127.

    Article  Google Scholar 

  • Nof, D. (2001) China’s development could lead to bottom water formation in the Japan/East Sea. Bull. American Meteorological Society 82, 609–618.

    Google Scholar 

  • Oren, R., Ellsworth, D.S., Johnsen, K.H., Phillips. N., Ewers, B.E., Maier, C., Schfer, K.V.R., McCarthy, H., Hendrey, G., McNulty, S.G. and Katul. G.G. (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472.

    Article  CAS  Google Scholar 

  • Pitman, A., Pielke, R., Avissar, R., Claussen, M., Gash, J. and Dolman, A.J. (1999) The role of land surface in weather and climate: does the land surface matter? IGBP-Global Change Newsletter 39, 4–11.

    Google Scholar 

  • Plantinga, A.J. and Mauldin, T. (2001) A method for estimating the cost of CO2 mitigation through afforestation. Climate Change 49, 21–40.

    Article  Google Scholar 

  • Putuhena, W.M. and Cordery, I. (2000). Some hydrological effects of changing forest cover from eucalypts to Pinus radiata. Agric. For. Meteorol. 100, 59–72.

    Article  Google Scholar 

  • Rabbinge, R., van Latesteijn, H.C. and Goudriaan, J. (1993) Assessing the Greenhouse Effect in Agriculture. In: Lake, J.V., Bock, G.R., and Achill, K. (eds.). Environmental Change and Human Health, Ciba Foundation Symposium 175, John Wiley, Chichester, 62–79.

    Google Scholar 

  • Reynard, N.S., Prudhomme, C. and Crooks, S.M. (2001) The flood characteristics of large U.K. rivers: potential effects of changing climate and land use. Climatic Change 48, 343–359.

    Article  Google Scholar 

  • Robson, A.J., Jones, T.K., Reed, D.W., and Bayliss, A.C. (1998) A study of national trend and variation in U.K. floods. Int. J. Climatol. 18, 165–182.

    Article  Google Scholar 

  • Rosenfield, D., Rudich, Y. and L. Ronen (2001) Desert dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Science 98, 5975–5980.

    Article  Google Scholar 

  • Sellers, P.J. and Lockwood, J.G. (1981) A numerical simulation of the effects of changing vegetation type on surface hydroclimatology. Climate Change 3, 121–136.

    Google Scholar 

  • Shiklomanov, I.A. (2000) World Water Resources: Modern Assessment and Outlook for the 21st Century. IHP/UNESCO, Paris, France.

    Google Scholar 

  • Silva Dias, M.A.F. and Regnier, P. (1996) Simulation of mesoscale simulations in a deforested area of Rondonia in the dry season. In: Gash, J.H.C., Nobre, C.A., Roberts, J.M. and Victoria, R.L. (eds). Amazonian deforestation and climate. Wiley & Sons, 531–548.

    Google Scholar 

  • Teklehaimanot, Z., Jarvis, P.G. and Ledger, D.C. (1991) Rainfall interception and boundary layer conductance in relation to tree spacing. J. Hydro!. 123, 261–278.

    Article  Google Scholar 

  • WBGU (German Advisory Council on Global Change) (1999) World in transition: ways towards sustainable management of freshwater resources. Springer-Verlag Berlin-Heidelberg.

    Google Scholar 

  • Yuruki, T. (1964) Analytical studies on factors controlling tree growths. Bull. Kyushu Univ. For. (Fukuoka, Japan) 37, 85–178 (in Japanese with English summary).

    Google Scholar 

  • Zhang, H., Henderson-Sellers A. and McGuffie K. (2001) The compounding effects of tropical deforestation and greenhouse warming on climate. Climate Change 49, 309–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moors, E.J., Dolman, A.J. (2003). Land-Use Change, Climate and Hydrology. In: Dolman, A.J., Verhagen, A., Rovers, C.A. (eds) Global Environmental Change and Land Use. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0335-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0335-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6308-3

  • Online ISBN: 978-94-017-0335-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics