Skip to main content

Nonconvex Energy Minimization and Relaxation in Computational Material Science

  • Conference paper
IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 108))

Abstract

The mathematical modeling of microstructures has important applications in material science, e.g. advanced materials or phase transitions, micromagnetism, homogenization, and optimization. It is typical in those models that the continuous minimization problem (M) is nonconvex and lacks classical solutions. There exist infimising sequences in (M) that have a weak limit, but non-(quasi-)convexity implies, in general, that the weak limit u is not a solution of the problem (M). In physical and in numerical experiments, we observe oscillations of strains which form a macroscopic or averaged quantity Du. The efficient numerical simulation on the macroscopic level aims to compute the weak limit u as a solution of a related Relaxed Problem. This is in contrast to microscopic mechanisms which are directly approached by a finite element minimization of (M). The two relaxations discussed are based on Young measures (G) and on quasiconvexification (Q). The presentation discusses adapted finite element strategies for relaxed problems such as the 2-well problem in one-dimension, in higher dimensions, in linearized elasticity (with hysteresis) or in related topics in micromagnetism and homogenization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, J.M. (1989). A version of the fundamental theorem for young measures. In: Partial differential equations and continuum models ofphase transitions, Lecture Notes in Physics, M. Slemrod, M. Rascle, D. Serre (eds.), Berlin, Springer, 344, 207–215.

    Google Scholar 

  2. Ball, J.M. (1999). Singularities and computation of minimizers for variational problems. In: Proceedings of Foundations of Computational Mathematics Conference, Oxford, Cambridge University Press.

    Google Scholar 

  3. Bartels, S. (2001). Numerical analysis of some non-convex variational problems, PhD Thesis, Christian-Albrechts University Kiel, Germany.

    Google Scholar 

  4. Bartels, S. (2002). Adaptive approximation of Young measure solutions in scalar nonconvex variational problems. In preparation.

    Google Scholar 

  5. Bartels, S., Carstensen, C., Prohl, A. and Plechac, P. (2002). Work in progress on strong convergence by stabilization. In preparation.

    Google Scholar 

  6. Bartels, S. and Prohl, A. (2002). Multiscale resolution in the computation of crystalline microstructure. Preprint available at “http://www.ima.umn.edu/preprints/feb02/feb02.html”.

    Google Scholar 

  7. Bethuel, F., Huisken, G., Müller, S. and Steffen, K. (1999). Variational models for microstructure and phase transitions. In: Calculus of variations and geometric evolution problems, S. Hildebrandt and M. Struwe (eds.), Springer, 1713, 85–210.

    Google Scholar 

  8. Carstensen, C. (2000). Numerical Analysis of Microstructure. In: Theory and Numerics of Differential Equations, Durham 2000, J.F. Blowey, J.P. Coleman and A.W. Craig (eds.), Springer Berlin Heidelberg (Univeritext), 59–126,

    Google Scholar 

  9. Carstensen, C. and Dolzmann, G. (1999). An a priori error estimate for finite element discretizations in nonlinear elasticity for polyconvex materials under small loads.Berichtsreihe des Mathematischen Seminars Kiel, 99–12, preprint available at “http://www.numerik.uni-kiel.de/reports/1999/99–12.ps.gz”.

    Google Scholar 

  10. Carstensen, C. and Dolzmann, G. (2001). Time-space discretization of the nonlinear hyperbolic system utt = div (σ-(Du) + Dut). Publications of the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, 60, preprint available at “http://www.mis.mpg.de/preprints/2001/prepr6001-abstr.html/preprints/2001/prepr6001-abstr.html”.

    Google Scholar 

  11. Carstensen, C., Hackl, K. and Mielke, A. (2000). Nonconvex potentials and microstructures in finite-strain plasticity. Proc. Roy. Soc. A., in press, preprint Nr. 72/2000 available at “http://www.mis.mpg.de/preprints/2000/”.

    Google Scholar 

  12. Carstensen, C. and Jochimsen, K. (2002). Adaptive finite element error control for nonconvex minimization problems: Numerical two-well model example allowing microstructures. Preprint.

    Google Scholar 

  13. Carstensen, C. and Müller, S. (2001). Local stress regularity in scalar nonconvex variational problems. Preprint.

    Google Scholar 

  14. Carstensen, C. and Plecháč, P. (1997). Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp., 66, 997–1026.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Carstensen, C. and Plecháč, P. (2000). Numerical analysis of compatible phase transitions in elastic solids. SIAM J. Numer. Anal., 37(6), 2061–2081.

    Article  MathSciNet  MATH  Google Scholar 

  16. Carstensen, C. and Plecháč, P. (2001). Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. M2AN, in press, preprint available at “http://www.mis.mpg.de/preprints/2000/prepr8000-abstr.html/preprints/2000/prepr8000-abstr.html”.

    Google Scholar 

  17. Carstensen, C., Prohl, A. (2001). Numerical analysis of relaxed micromagnetics by penalized finite elements. Numer. Math., published online May 4, 2001, DOI 10.1007/s00211010026 8.

    Google Scholar 

  18. Carstensen, C. and Rieger, M.O. (2002). Work on Young measure approximation of nonlinear wave equation. In progress.

    Google Scholar 

  19. Carstensen, C. and Roubiček, T. (2000). Numerical approximation of Young measures in nonconvex variational problems. Numer. Math., 84, 395–415.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chipot, M. (2001). Elements of nonlinear analysis, Birkhäuser.

    Google Scholar 

  21. Chipot, M. and Müller, S. (1997). Sharp energy estimates for finite element approximation of nonconvex problems. Max-Plank-Institut Leipzig, preprint 1997–8.

    Google Scholar 

  22. Chipot, M. and Evans, L.C. (1986). Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. R. Soc. Edinburgh, 102 A, 291–303.

    Article  MathSciNet  Google Scholar 

  23. Dacorogna, B. (1989). Direct methods in the calculus of variations. Applied Mathematical Sciences, Springer, 78.

    Book  MATH  Google Scholar 

  24. Luskin, M. (1996). On the computation of crystalline microstructure. Acta Numerica, 5, 191–257.

    Article  MathSciNet  Google Scholar 

  25. Nicolaides, R.A. and Walkington, N.J. Strong Convergence of Numerical Solutions to Degenerate Variational Problems. Math. Comp., 64, 117–127.

    Google Scholar 

  26. Ortiz, M. and Repetto, E.A. (1999). Nonconvex energy minimisation and dislocation in ductile single crystals. Journal of the Mechanics and Physics of Solids, 47, 397–462.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Pedregal, P. (1997). Parametrised measures and variational principles, Birkhäuser.

    Book  Google Scholar 

  28. Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus. Series in Nonlinear Analysis and Applications, Walter De Gruyter, New York, 4.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Carstensen, C. (2003). Nonconvex Energy Minimization and Relaxation in Computational Material Science. In: Miehe, C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0297-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6239-0

  • Online ISBN: 978-94-017-0297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics