Skip to main content

Cooled Radiofrequency Catheter Ablation

  • Chapter
  • 116 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 241))

Abstract

During the past decade, radiofrequency catheter ablation has emerged as an important definitive approach to the treatment of most types of ventricular and supraventricular arrhythmias.1,2 The development of temperature monitoring and closed loop temperature control of RF energy output was subsequently shown to facilitate RF catheter ablation and have been accepted into routine clinical practice.3,4 Despite the remarkable safety and efficacy of RF catheter ablation as used in routine clinical practice, certain types of arrhythmias proved to be more refractory to attempts at catheter ablation. Most notable among these were atrial fibrillation, atrial flutter, and nonidiopathic ventricular tachycardia. For these arrhythmias, new tools to facilitate ablation of these arrhythmias were deemed necessary. Linear catheter ablation systems and ablation systems designed specifically to facilitate catheter ablation in the region of the pulmonary veins are being developed for atrial fibrillation.5,6 In contrast, it was felt that ablation systems capable of creating deeper lesions were required to improve the efficacy of catheter ablation of atrial flutter as well as nonidiopathic VT. Cooling the tip of the ablation catheter was subsequently proposed as a potential solution to develop larger and deeper lesions during RF application.7,8

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calkins H, Sousa J, El-Atassi R, Leon A, Kou W, Kalbfleisch S, Morady F. Radiofrequency catheter ablation of accessory atrioventricular connections in 250 patients. Circulation. 1992;85:1337–1346.

    Article  PubMed  CAS  Google Scholar 

  2. Jackman WM, Wang X, Friday KJ, Roman CA, Moulton KP, Beckman KJ, McClelland JH, Twidale N, Hazlitt HA, Prior MI, Margolis PD, Calame JD, Overholt ED, Lazzara R. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med. 1991;324:1605–1611.

    Article  PubMed  CAS  Google Scholar 

  3. Langberg JJ, Calkins H, El-Atassi R Borganelli M, Leon A, Kalbfleisch SJ, Morady F. Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation. 1992;86:1469–1474.

    Article  PubMed  CAS  Google Scholar 

  4. Calkins H, Prystowsky E, Carlson M, Klein LS, Saul JP, Gillette P. Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Circulation. 1994;90:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  5. Calkins H, Hall J, Ellenbogen K, Walcott G, Sherman M, Bowe W, Simpson J, Castellano T, Kay GN. A new system for catheter ablation of atrial fibrillation. Am J Cardiol. 1999;83:227D–236D.

    Article  Google Scholar 

  6. Lesh MD, Guerra PG, Roithinger FX, Goseki Y, Sparks PB, Diederich C, Nau WH, Maguire M, Taylor K. Novel catheter technology for ablative cure of atrial fibrillation. J Int Cardiac Electrophysiol. 2000;4(1): 127–139.

    Article  Google Scholar 

  7. Wittkampf FHM, Hauer RN, Robles de Medina EO. Radiofrequency ablation with a cooled porous electrode catheter. J Am Coll Cardiol. 1988; 11:17.

    Article  Google Scholar 

  8. Huang SKS, Cuenoud H, Tan de Guzman W. Increase in the lesion size and decrease in the impedance rise with saline infusion electrode catheter for radiofrequency catheter ablation. Circulation. 1989;80:11–324.

    Article  Google Scholar 

  9. Dinerman JL, Berger RD, Calkins H. Temperature monitoring during radiofrequency ablation. J Cardiovasc Electrophysiol. 1996;7:163–173.

    Article  PubMed  CAS  Google Scholar 

  10. Haines DE, Watson DD, Verow AF. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model. Circulation Research. 1990;67:124–129.

    Article  PubMed  CAS  Google Scholar 

  11. Otomo K, Yamanashi WS, Tondo C, Antz M, Bussey J, Pitha JV, Arruda M, Nakagawa H, Wittkampf FHM, Lazzara R, Jackman WM. Why a large tip electrode makes a deeper radiofrequency lesion: Effects of increase in electrode cooling and electrode-tissue interface area. J Cardiovasc Electrophysiol. 1998;9:47–54.

    Article  PubMed  CAS  Google Scholar 

  12. Nakagawa H, Wittkampf FHM, Yamanashi WS, Pitha JV, Imai S, Campbell B, Arruda M, Lazzara R, Jackman WM. Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circulation. 1998;98:458–465.

    Article  PubMed  CAS  Google Scholar 

  13. Demazumder D, Kallash HL, Schwartzman D. Comparison of different electrodes for radiofrequency ablation of myocardium using saline irrigation. PACE. 1997;20:11–1076.

    Google Scholar 

  14. Hoey MF and Mulier PM. Fluoroscopic visualization of ventricular ablation after radiofrequency energy application with the saline electrode. Circulation. 1997;96(Supp 1):I-319.

    Google Scholar 

  15. Liem LB, Pomeranz M, Riseling K, Anderson S, Berry GJ. Electrophysiological correlates of transmural linear ablation. PACE. 2000;23:40–46.

    Article  PubMed  CAS  Google Scholar 

  16. Calkins H, Epstein A, Packer D, Arria AM, Hummel J, Gilligan DM, Trusso J, Carlson M, Luceri R, Kopelman H, Wilber D, Wharton JM, Stevenson W. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy. J Am Coll Cardiol. 2000;35:1905–14.

    Article  PubMed  CAS  Google Scholar 

  17. Atiga WL, Worley SJ, Hummel J, Berger RD, Gohn DC, Mandalakas NJ, Kalbfleisch S, Halperin H, Donahue K, Tomaselli G, Calkins H, Daoud E. Prospective randomized comparison of cooled RF versus standard RF energy for ablation of typical atrial flutter. Submitted. 2000.

    Google Scholar 

  18. Delacretaz E, Stevenson WG, Winters GL, Mitchell RN, Stewart S, Lynch K, Friedman PL. Ablation of ventricular tachycardia with a saline-cooled radiofrequency catheter: Anatomic and histologic characteristics of the lesions in humans. J Cardiovasc Electrophysiol. 1999;10:860–865.

    Article  PubMed  CAS  Google Scholar 

  19. Jaïs P, Hai’ssaguerre M, Shah DC, Takahashi A, Hocini M, Lavergne T, Lafitte S, Le Mouroux A, Fischer B, Cleménty J. Successful irrigated-tip catheter ablation of atrial flutter resistant to conventional radiofrequency ablation. Circulation. 1998;98:835–838.

    Article  PubMed  Google Scholar 

  20. Jaïs P, Shah DC, Hai’ssaguerre M, Hocini M, Garrigue S, Le Metayer P, Clémenty J. Prospective randomized comparison of irrigated-tip versus conventional-tip catheters for ablation of common flutter. Circulation. 2000;101:772–776.

    Article  PubMed  Google Scholar 

  21. Ruffy R, Imran MA, Santel DJ, Wharton JM. Radiofrequency delivery through a cooled catheter tip allows the creation of larger endomyocardial lesions in the ovine heart. J Cardiovasc Electrophysiol. 1995;6:1089–1096.

    Article  PubMed  CAS  Google Scholar 

  22. Nakagawa H, Yamanshi WS, Pitha JV, Arruda M, Wang X, Ohtomo K, Beckman KJ, McClelland JH, Lazzra R, Jackman WM. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation. 1995;91:2264–2273.

    Article  PubMed  CAS  Google Scholar 

  23. Petersen HH, Chen X, Pietersen A, Svendsen JH, Haunso S. Temperature-controlled irrigated tip radiofrequency catheter ablation: Comparison of in vivo and in vitro lesioni dimensions for standard catheter and irrigated tip catheter with minimal infusion rate. J Cardiovasc Electrophysiol. 1998;9:409–414.

    Article  PubMed  CAS  Google Scholar 

  24. Wharton JM, Wilber DJ, Calkins H et al. Utility of tip thermometry during radiofrequency ablation in humans using an internally perfused saline cooled catheter. Circulation. 1997;96(Suppl 1);I-318.

    Google Scholar 

  25. Nibley C, Sykes CM, McLaughlin G, Chapman T, Rowan R, Wolf P, Wharton JM. Myocardial lesion size during radiofrequency current catheter ablation is increased by intra-electrode tip chilling. J Am Coll Cardiol. 1995;25:293A.

    Google Scholar 

  26. Skrumeda LL, Mehra R. Comparison of standard and irrigated radiofrequency ablation in the canine ventricle. J Cardiovasc Electrophysiol. 1998;9:1196–1205.

    Article  PubMed  CAS  Google Scholar 

  27. Petersen HH, Chen X, Pietersen A, Svendsen JH, Haunso S. Tissue temperatures and lesion size during irrigated tip catheter radiofrequency ablation: An in vitro comparison of temperature-controlled irrigated tip ablation, power-controlled irrigated tip ablation, and standard temperature-controlled ablation. PACE. 2000;23:8–17.

    Article  PubMed  CAS  Google Scholar 

  28. Wong WS, VanderBrink BA, Riley RE, Pmeranz M, Link MS, Homoud MK, Estes NA 3rd, Wang PJ. Effect of saline irrigation flow rate on temperature profile during cooled radiofrequency ablation. J Interv Card Electrophysiol. 2000;4:321–6.

    PubMed  CAS  Google Scholar 

  29. Wilber D, Epstein A, Kay GN, Stevenson W, Wharton JM, Carlson M, Gilligan D, Ellenbogen K, Stark S, Packer D, Estes NAM III, Wang P, Berger R, Calkins H. Radiofrequency ablation system for the treatment of ventricular tachycardia. PACE. 1997;20:1123

    Google Scholar 

  30. Calkins H., Bigger JT, Ackerman SJ, Duff SB, Wilber D, Kerr RA, Bar-Din M, Beusterien KM, Strauss MJ. Cost-effectiveness of catheter ablation in patients with ventricular tachycardia. Circulation. 2000;101:280–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Juang, G.J., Atiga, W.L., Berger, R.D., Calkins, H. (2001). Cooled Radiofrequency Catheter Ablation. In: Liem, L.B., Downar, E. (eds) Progress in Catheter Ablation. Developments in Cardiovascular Medicine, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9791-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9791-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5882-9

  • Online ISBN: 978-94-015-9791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics