Skip to main content

Recombinase-mediated Gene Integration in Plants

  • Chapter
  • 790 Accesses

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 32))

Abstract

Genetic transformation of plants is potentially the most precise technology available for crop improvement. Compared to crossing in a trait or inducing mutations, introducing a single characterized gene, or even several genes in a biosynthetic pathway, would be a more direct way to alter a plant phenotype without incorporating unwanted changes. While important scientific and agricultural advances are being made through plant transformation, the existing procedures leave room for improvement. As with animal systems (Jaenisch et al., 1981; Lacy et al., 1983), the same transforming molecule does not always generate transgenic materials with the same phenotype (Herrera-Estrella et al., 1984; Jones et al., 1985). In some reports, a high degree of phenotypic variation is seen among independent transformants. In other cases, plants which initially expressed a transgene either did not express or showed a reduced level of transgene expression later in development or in subsequent generations (Brandle et al., 1995; Meyer, 1995a,b).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, H., E.C. Dale, E. Lee and D.W. Ow. 1995. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7: 649–659.

    Article  PubMed  CAS  Google Scholar 

  • Allen, G.A., G.E.J. Hall, L.C. Childs, A.K. Weissinger, S. Spiker and W.F. Thompson. 1993. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell. 5: 603–613.

    PubMed  CAS  Google Scholar 

  • An, G. 1986. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81: 86–91.

    Article  PubMed  CAS  Google Scholar 

  • Avramova, Z., P. San Miguel, E. Georgieva and J.L. Bennetzen. 1995. Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adhl. Plant Cell. 7: 1667–1680.

    CAS  Google Scholar 

  • Battacharyya, M.K., B.A. Stermer and R.A. Dixon. 1994. Reduced variation in transgene expression from a binary vector with selectable markers at the right and left T-DNA borders. Plant J. 6: 957–968.

    Article  Google Scholar 

  • Baubonis, W. and B. Sauer. 1993. Genomic targeting with purified Cre recombinase. Nucl Acids Res. 21: 2025–2029.

    Article  PubMed  CAS  Google Scholar 

  • Baur, M., I. Potrykus and J. Paszkowski. 1991. Intermolecular homologous recombination in plants. Genes Dev. 5: 287.

    Article  Google Scholar 

  • Brandle, J.E., S.G. McHugh, L. James, H. Labbé and B.L. Miki. 1995. Instability of transgene expression in field grown tobacco carrying the csrl-1 gene for sulfonylurea herbicide resistance. Bio/Technology. 13: 994–998.

    Article  CAS  Google Scholar 

  • Breyne, P., M.V. Montagu, A. Depicker and G. Gheysen. 1992. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell. 4: 463–471.

    PubMed  CAS  Google Scholar 

  • Bruce, W.B. and W.B. Gurley. 1987. Functional domains of a T-DNA promoter active in crown gall tumours. Mol Cell Biol. 7: 59–67.

    PubMed  CAS  Google Scholar 

  • Bruckner, R.C. and M.M. Cox. 1986. Specific contacts between the FLP protein of the yeast 2-micron plasmid and its recombination site. J Biol Chem. 261: 11798–11807.

    PubMed  CAS  Google Scholar 

  • Dale, E.C. and D.W. Ow. 1990. Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage Pl recombinase. Gene. 91: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • De Groot, M., R. Offringa and M. Does. 1992. Mechanisms of intermolecular homologous recombination in plants as studied with single- and double-stranded DNA molecules. Nucl Acids Res. 20: 2785–2794.

    Article  PubMed  Google Scholar 

  • Dean, C., J. Jones, M. Favreau, P. Dunsmuir and J. Bedbrook. 1988. Expression of tandem gene fusions in transgenic tobacco plants. Nucl Acids Res. 16: 9267–9283.

    Article  PubMed  CAS  Google Scholar 

  • Dunsmuir, P., J. Bedbrook, D. Bond-Nuttler, C. Dean, D. Gidoni and J. Jones. 1987. The expression of introduced genes in regenerated plants. In: Genetic Engineering: Principles and Methods, pp. 45–58 (eds J. Setlow and A. Hollaender). New York: Plenum Press.

    Google Scholar 

  • Evans, D.A. 1989. Somaclonal variation — genetic basis and breeding applications. Trends Genet. 5: 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Fassler, R., K. Martin, E. Forsberg, T. Litzenburger and A. Iglesias. 1995. Knockout mice: how to make them and why. The immunological approach. Int Arch Allergy Appl Immunol. 106: 323–334.

    Article  CAS  Google Scholar 

  • Fukushige, S. and B. Sauer. 1992. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA. 89: 7905–7909.

    Article  PubMed  CAS  Google Scholar 

  • Furth, P.A., L. Hennighausen, C. Baker, B. Beatty and R. Woychick. 1991. The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice. Nucl Acids Res. 19: 6205–6208.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella, L., G. van den Broeck, R. Maenhaut, M. van Montagu, J. Schell, M. Timko and A. Cashmore. 1984. Light-inducible and chloroplast-associated expression of a chimeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature. 310: 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Hoess, R.H. and K. Abremski. 1990. The Cre-lox recombination system. In: Nucleic Acids and Molecular Biology, pp. 99–109 (eds F. Eckstein and D.M.J. Lilley). Berlin: Springer-Verlag.

    Google Scholar 

  • Howe, M., P. Dimitri, M. Berloco and B.T. Wakimoto. 1995. Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics. 140: 1033–1045.

    PubMed  CAS  Google Scholar 

  • Huang, L.-C., E.A. Wood and M.M. Cox, 1991. A bacterial model system for chromosomal targeting. Nucl Acids Res. 19: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch, R., D. Jähner, P. Nobis, I. Simon, J. Löhler, K. Harbers and D. Grotkopp. 1981. Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell. 24: 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.D.G., P. Dunsmuir and J. Bedbrook. 1985. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 4: 2411–2418.

    PubMed  CAS  Google Scholar 

  • Klippel, A., K. Cloppenborg and R. Kahmann. 1988. Isolation and characterization of unusual gin mutants. EMBO J. 7: 3983–3989.

    PubMed  CAS  Google Scholar 

  • Lacy, E., S. Roberts, E.P. Evans, M.D. Burtenshaw and F.D. Constantini. 1983. A foreign ß-globin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues. Cell. 34: 343–358.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, P.J. and W.R. Scowcroft. 1981. Somaclonal variation, a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 60: 197–214.

    Article  Google Scholar 

  • Lee, K.Y., P. Lund, K. Lowe and P. Dunsmuir, 1990. Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell. 2: 415–425.

    PubMed  CAS  Google Scholar 

  • Lyznik, L.A., J.C. Mitchell, L. Hirayama and T.K. Hodges. 1993. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucl Acids Res. 21: 969–975.

    Article  PubMed  CAS  Google Scholar 

  • Mack, A., B. Sauer, K. Abremski and R. Hoess. 1992. Stoichiometry of the Cre recombinase bound to the lox recombining site. Nucl Acids Res. 20: 4451–4455.

    Article  PubMed  CAS  Google Scholar 

  • Maeser, S. and R. Kahmann. 1991. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplasts. Mol Gen Genet. 230: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Maretzki, A. 1987. Tissue culture: its prospects and problems. In: Sugarcane Improvement Through Breeding, pp. 343–384 (ed. D.J. Heinz). Amsterdam: Elsevier.

    Google Scholar 

  • Matzke, M.A. and A.J.M. Matzke. 1995. How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107: 679–685.

    PubMed  CAS  Google Scholar 

  • Meyer, P. 1995a. Understanding and controlling transgene expression. Trends Biotechnol. 13: 332–337.

    Article  CAS  Google Scholar 

  • Meyer, P. 1995b. Variation of transgene expression in plants. Euphytica. 85: 359–366.

    Article  CAS  Google Scholar 

  • Miao, Z.-H. and E. Lam. 1995. Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J. 7: 359–365.

    CAS  Google Scholar 

  • Mlynárová, L., A. Loonen, J. Heldens, R.C. Jansen, P. Keizer, W.J. Stiekema and J.-P. Nap. 1994. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrixassociated region. Plant Cell. 6: 417–426.

    PubMed  Google Scholar 

  • Odell, J., P. Caimi, B. Sauer and S. Russell. 1990. Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet. 223: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Offringa, R., P. van den Elzen and P. Hooykaas. 1992. Gene targeting in plants using the Agrobacterium vector system. Transgen Res. 1: 114–123.

    Article  CAS  Google Scholar 

  • O’Gorman, S., D.T. Fox and G.M. Wahl. 1991. Recombinase-mediated gene activation and sitespecific integration in mammalian cells. Science. 251: 1351–1355.

    Article  PubMed  Google Scholar 

  • Onouchi, H., K. Yokoi, C. Machida, H. Matzuzaki, Y. Oshima, K. Matsuoka, K. Nakamura and Y. Machida. 1991. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucl Acids Res. 19: 6373–6378.

    Article  PubMed  CAS  Google Scholar 

  • Ow, D.W. and S.L. Medberry. 1995. Genome manipulation through site-specific recombination. Crit Rev. Plant Sci. 14: 239–261.

    CAS  Google Scholar 

  • Park, Y.-D., I. Papp, E.A. Moscone, V.A. Iglesias, H. Vaucheret, A.J.M. Matzke and M.A. Matzke. 1996. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 9: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Peach, C. and J. Velten. 1991. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol. 17: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Peschke, V.M. and R.L. Phillips. 1992. Genetic implications of somaclonal variation in plants. Adv Genet. 30: 41–75.

    Article  CAS  Google Scholar 

  • Phi-Van, L., J.P.v. Kries, W. Ostertag and W.H. Stratling. 1990. The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol. 10: 2302–2307.

    PubMed  CAS  Google Scholar 

  • Risseeuw, E., R. Offringa, M.E.I. Franke-van-Dijk and J.J. Hooykaas. 1995. Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J. 7: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, B. and N. Henderson. 1989. Cre-stimulated recombination at 4 loxP-containing DNA sequences placed into the mammalian genome. Nucl Acids Res. 17: 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, B. and N. Henderson. 1990. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2: 441–449.

    PubMed  CAS  Google Scholar 

  • Schöffl, F., G. Schröder, M. Kliem and M. Rieping. 1993. An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage correlated expression of a chimaeric heat shock gene in transgenic tobacco plants. Transgen Res. 2: 93–100.

    Article  Google Scholar 

  • Senecoff, J.F., P.J. Rossmeisl and M.M. Cox. 1988. DNA recognition by the FLP recombinase of the yeast 2 µ plasmid: a mutational analysis of the FLP binding site. J Mol Biol. 201: 405–421.

    Article  PubMed  CAS  Google Scholar 

  • Spiker, S. and F. William. 1996. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol. 110: 15–21.

    PubMed  CAS  Google Scholar 

  • Stavenhagen, J.B. and V.A. Zakian. 1994. Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Devel. 8: 1411–1422.

    Article  CAS  Google Scholar 

  • Van der Geest, A.H.M., G.E. Hall Jr, S. Spiker and T.C. Hall. 1994. The ß-phaseolin gene is flanked by matrix attachment regions. Plant J. 6: 413–423.

    Article  Google Scholar 

  • Wallrath, L.L. and S.C.R. Elgin. 1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Devel. 9: 1263–1277.

    Article  PubMed  CAS  Google Scholar 

  • Zou, Y.R., W. Muller, H. Gu and K. Rajewsky. 1994. Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol. 4: 1099–1103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albert, H., Ow, D.W. (1998). Recombinase-mediated Gene Integration in Plants. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Somaclonal Variation and Induced Mutations in Crop Improvement. Current Plant Science and Biotechnology in Agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9125-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4956-8

  • Online ISBN: 978-94-015-9125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics