Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1041 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gromov, M.: Partial differential relations, Vol. 9 of Ergebn. Math. Grenzgeb. (3), Springer, 1986.

    MATH  Google Scholar 

  2. Haefliger, A.: ‘Lectures on the theorem of Gromov’: Proc. Liverpool Singularities Sympos. II, Vol. 209 of Lecture Notes Math., Springer, 1971, pp. 128–141.

    Google Scholar 

  3. Adamyan, V.M., Arov, D.Z., and Krein, M.G.: ‘On infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz’, Funct. Anal. Appl. 2 (1968), 1–18. (Funktsional. Anal. Prilozh. 2, no. 1 (1968), 1–19.)

    MATH  Google Scholar 

  4. Adamyan, V.M., Arov, D.Z., and Krein, M.G.: ‘On infinite Hankel matrices and generalized problems of Carathéodory-Fejér and I. Schur’, Funct. Anal. Appl. 2 (1968), 269–281. (Funktsional. Anal. i Prilozh. 2, no. 2 (1968), 1–17.)

    MATH  Google Scholar 

  5. Adamyan, V.M., Arov, D.Z., and Krein, M.G.: ‘Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem’, Math. USSR Sb. 15 (1971), 31–73. (Mat. Sb. 86 (1971), 34–75.)

    Google Scholar 

  6. Adamyan, V.M., Arov, D.Z., and Krein, M.G.: ‘Infinite Hankel block matrices and some related continuation problems’, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 6 (1971), 87–112.

    MATH  Google Scholar 

  7. Francis, B.A.: A course in H control theory, Vol. 88 of Lecture Notes Control and Information Sci., Springer, 1986.

    Google Scholar 

  8. Garnett, J.B.: Bounded analytic functions, Acad. Press, 1981.

    MATH  Google Scholar 

  9. Hamburger, H.: ‘Über eine Erweiterung des Stieltiesschen Momentproblems’, Math. Ann. 81 (1920/1).

    Google Scholar 

  10. Hankel, H.: ‘Ueber eine besondre Classe der symmetrishchen Determinanten’, (Leipziger) Diss. Göttingen (1861).

    Google Scholar 

  11. Hartman, P.: ‘On completely continuous Hankel matrices’, Proc. Amer. Math. Soc. 9 (1958), 862–866.

    MathSciNet  Google Scholar 

  12. Khavinson, S.: ‘On some extremal problems of the theory of analytic functions’, Transl. Amer. Math. Soc. 32, no. 2 (1963), 139–154. (Uchen. Zap. Mosk. Univ. Mat. 144, no. 4 (1951), 133–143.)

    Google Scholar 

  13. Kronecker, L.: ‘Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen’, Monatsber. K. Preuss. Akad. Wiss. Berlin (1881), 535–600.

    Google Scholar 

  14. Megretskii, A.V.: ‘A quasinilpotent Hankel operator’, Leningrad Math. J. 2 (1991), 879–889.

    MathSciNet  Google Scholar 

  15. Megretskii, A.V., Peller, V.V., and Treil, S.R.: ‘The inverse spectral problem for self-adjoint Hankel operators’, Acta Math. 174 (1995), 241–309.

    MathSciNet  Google Scholar 

  16. Nehari, Z.: ‘On bounded bilinear forms’, Ann. of Math. 65 (1957), 153–162.

    MathSciNet  MATH  Google Scholar 

  17. Pekarskh, A.A.: ‘Classes of analytic functions defined by best rational approximations in H p , Math. USSR Sb. 55 (1986), 1–18. (Mat. Sb. 127 (1985), 3–20.)

    Google Scholar 

  18. Peller, V.V.: ‘Hankel operators of class S p and applications (rational approximation, Gaussian processes, the majoriza-tion problem for operators)’, Math. USSR Sb. 41 (1982), 443–479. (Mat Sb. 113 (1980), 538–581.)

    MATH  Google Scholar 

  19. Peller, V.V.: ‘A description of Hankel operators of class S p for p > 0, investigation of the rate of rational approximation and other applications’, Math. USSR Sb. 50 (1985), 465–494. (Mat. Sb. 122 (1983), 481–510.)

    MATH  Google Scholar 

  20. Peller, V.V.: ‘An excursion into the theory of Hankel operators’: Holomorphic Function Spaces Book. Proc. MSRI Sem. Fall 1995, 1995.

    Google Scholar 

  21. Peller, V.V., and Khrushchev, S.V.: ‘Hankel operators, best approximation and stationary Gaussian processes’, Russian Math. Surveys 37, no. 1 (1982), 61–144. (Uspekhi Mat. Nauk 37, no. 1 (1982), 53–124.)

    MathSciNet  MATH  Google Scholar 

  22. Peller, V.V., and Young, N.J.: ‘Superoptimal analytic approximations of matrix functions’, J. Funct. Anal. 120 (1994), 300–343.

    MathSciNet  MATH  Google Scholar 

  23. Peller, V.V., and Young, N.J.: ‘Superoptimal singular values and indices of matrix functions’, Integral Eq. Operator Th. 20 (1994), 35–363.

    MathSciNet  Google Scholar 

  24. Power, S.: Hankel operators on Hilbert space, Pitman, 1982.

    MATH  Google Scholar 

  25. Semmes, S.: ‘Trace ideal criteria for Hankel operators and applications to Besov classes’, Integral Eq. Operator Th. 7 (1984), 241–281.

    MathSciNet  MATH  Google Scholar 

  26. Treil, S.R.: ‘On superoptimal approximation by analytic and meromorphic matrix-valued functions’, J. Funct. Anal. 131 (1995), 243–255.

    MathSciNet  Google Scholar 

  27. Amoros, J., Burger, M., Corlette, K., Kotschick, D., and Toledo, D.: Fundamental groups of compact Kähler manifolds, Vol. 44 of Math. Surveys Monogr., Amer. Math. Soc., 1996.

    MATH  Google Scholar 

  28. Burstall, F.E., Ferus, D., Pedit, F., and Pinkall, U.: ‘Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras’, Ann. of Math. 138 (1993), 173–212.

    MathSciNet  MATH  Google Scholar 

  29. Carlson, J.A., and Toledo, D.: ‘Harmonic maps of Kähler manifolds to locally symmetric spaces’, Publ. Math. IHES 69 (1989), 173–201.

    MathSciNet  MATH  Google Scholar 

  30. Corlette, K.: ‘Archimedean superrigidity and hyperbolic geometry’, Ann. of Math. 135 (1992), 165–182.

    MathSciNet  MATH  Google Scholar 

  31. Eells, J., and Lemaire, L.: ‘A report on harmonic maps’, Bull. London Math. Soc. 10 (1978), 1–68.

    MathSciNet  MATH  Google Scholar 

  32. Eells, J., and Lemaire, L.: ‘Another report on harmonic maps’, Bull. London Math. Soc. 20 (1988), 385–524.

    MathSciNet  MATH  Google Scholar 

  33. Eells, J., and Sampson, J.: ‘Harmonic mappings of Riemannian manifolds’, Amer. J. Math. 86 (1964), 109–160.

    MathSciNet  MATH  Google Scholar 

  34. Farrell, F.T., and Jones, L.E.: ‘Some non-homeomorphic harmonic homotopy equivalences’, Bull. London Math. Soc. 28 (1996), 177–180.

    MathSciNet  MATH  Google Scholar 

  35. Fordy, A.P., and Wood, J.C. (eds.): Harmonic maps and integrable systems, Vol. 23 of Aspects of Math., Vieweg, 1994.

    MATH  Google Scholar 

  36. Gromov, M., and Schoen, R.: ‘Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one’, Publ. Math. IHES 76 (1992), 165–246.

    MathSciNet  MATH  Google Scholar 

  37. Guest, M.A.: Harmonic maps, loop groups, and integrable systems, Vol. 38 of London Math. Soc. Student Texts, Cambridge Univ. Press, 1997.

    MATH  Google Scholar 

  38. Hernandez, L.: ‘Kähler manifolds and 1/4 pinching’, Duke Math. J. 62 (1991), 601–611.

    MathSciNet  MATH  Google Scholar 

  39. Hitchin, N.: ‘Harmonic maps from a 2-torus to the 3-sphere’, J. Diff. Geom. 31 (1990), 627–710.

    MathSciNet  MATH  Google Scholar 

  40. Hélein, F.: ‘Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne’, C.R. Acad. Sci. Paris Ser. I 312 (1991), 591–596.

    MATH  Google Scholar 

  41. Mok, N., Siu, Y.-T., and Yeung, S.-K.: ‘Geometric superrigidity’, Invent. Math. 113 (1993), 57–83.

    MathSciNet  MATH  Google Scholar 

  42. Rivière, T.: ‘Applications harmoniques de B 3 dans S 2 partout discontinues’, C.R. Acad. Sci. Paris Ser. I 314 (1992), 719–723.

    MATH  Google Scholar 

  43. Tromba, A.J.: Teichmüller theory in Riemannian geometry, ETH Lectures. Birkhäuser, 1992.

    MATH  Google Scholar 

  44. Wolf, M.: ‘On realizing measured foliations via quadratic differentials of harmonic maps to R-trees’, J. Anal. Math. 68 (1996), 107–120.

    MathSciNet  MATH  Google Scholar 

  45. Yau, S.-T and Zheng, F.: ‘Negatively 1/4-pinched Riemannian metric on a compact Kahler manifold’, Invent. Math. 103 (1991), 527–536.

    MathSciNet  MATH  Google Scholar 

  46. Baumgartner, J.E.: ‘Applications of the Proper Forcing Axiom’, in K. Kunen and J.E. Vaughan (eds.): Handbook of Set Theoretic Topology, North-Holland, 1984, pp. 913–959.

    Google Scholar 

  47. Hausdorff, F.: ‘Summen von ℵ1 Mengen’, Fund. Math. 26 (1936), 241–255.

    Google Scholar 

  48. Kune, K.: ‘(κ,λ*)-gaps under MA’, Unpublished manuscript.

    Google Scholar 

  49. Berg, M. van den: ‘Heat equation on a hemisphere’, Proc. R. Soc. Edinburgh 118A (1991), 5–12.

    Google Scholar 

  50. Berg, M. van den, and Davies, E.M.: ‘Heat flow out of regions in R n’ , Math. Z. 202 (1989), 463–482.

    MathSciNet  MATH  Google Scholar 

  51. Berg, M. van den, Desjardins, S., and Gilkey, P.: ‘Functoriality and heat content asymptotics for operators of Laplace type’, Topol. Methods Nonlinear Anal. 2 (1993), 147–162.

    MathSciNet  MATH  Google Scholar 

  52. Berg, M. van den, and Gall, J.-F. Le: ‘Mean curvature and the heat equation’, Math. Z. 215 (1994), 437–464.

    MathSciNet  MATH  Google Scholar 

  53. Berg, M. van den, and Gilkey, P.: ‘Heat content asymptotics of a Riemannian manifold with boundary’, J. Funct. Anal. 120 (1994), 48–71.

    MathSciNet  MATH  Google Scholar 

  54. Berg, M. van den, and Gilkey, P.: ‘Heat invariants for odd dimensional hemispheres’, Proc. R. Soc. Edinburgh 126A (1996), 187–193.

    Google Scholar 

  55. Berg, M. van den, and Srisatkunarajah, S.: ‘Heat flow and Brownian motion for a region in R 2 with a polygonal boundary’, Probab. Th. Rel. Fields 86 (1990), 41–52.

    MATH  Google Scholar 

  56. Gilkey, P.: ‘Heat content asymptotics’, in Booss and Wajciechowski (eds.): Geometric Aspects of Partial Differential Equations, Vol. 242 of Contemp. Math., Amer. Math. Soc., 1999, pp. 125–134.

    Google Scholar 

  57. McAvity, D.M.: ‘Heat kernel asymptotics for mixed boundary conditions’, Class. Quant. Grav 9 (1992), 1983–1998.

    MathSciNet  MATH  Google Scholar 

  58. McAvity, D.M.: ‘Surface energy from heat content asymptotics’, J. Phys. A: Math. Gen. 26 (1993), 823–830.

    MathSciNet  MATH  Google Scholar 

  59. Savo, A.: ‘Heat content and mean curvature’, J. Rend. Mat. Appl. VII Ser. 18 (1998), 197–219.

    MathSciNet  MATH  Google Scholar 

  60. Savo, A.: ‘Uniform estimates and the whole asymptotic series of the heat content on manifolds’, Geom. Dedicata 73 (1998), 181–214.

    MathSciNet  MATH  Google Scholar 

  61. Baez, J., and Dolan, J.: ‘Higher-dimensional algebra and topological quantum field theory’, J. Math. Phys. 36 (1995), 6073–6105.

    MathSciNet  MATH  Google Scholar 

  62. Baez, J., and Dolan, J.: ‘Higher-dimensional algebra III: n-categories and the algebra of opetopes’, Adv. Math. 135 (1998), 145–206.

    MathSciNet  MATH  Google Scholar 

  63. Baez, J., and Langford, L.: ‘Higher-dimensional algebra IV: 2-tangles’,(1999).

    Google Scholar 

  64. Baez, J., and Neuchl, M.: ‘Higher-dimensional algebra I: braided monoidal 2-categories’, Adv. Math. 121 (1996), 196–244.

    MathSciNet  MATH  Google Scholar 

  65. Balteanu, C., Fierderowicz, Z., Schwaenzl, R., and Vogt, R.: ‘Iterated monoidal categories’, Preprint Ohio State Math. Research Inst. 5 (1998).

    Google Scholar 

  66. Batanin, M.A.: ‘Computads for finitary monads on globular sets’: Higher Category Theory (Evanston, Ill, 1997), Vol. 230 of Contemp. Math., Amer. Math. Soc., 1998, pp. 37–57.

    Google Scholar 

  67. Batanin, M.A.: ‘Monoidal globular categories as natural environment for the theory of weak n-categories’, Adv. Math. 136 (1998), 39–103.

    MathSciNet  MATH  Google Scholar 

  68. Berger, C.: ‘Double loop spaces, braided monoidal categories and algebraic 3-types of space’, Prépubl. Univ. Nice-Sophia Antipolis, Lab. Jean-Alexandre Dieudonné 491 (1997).

    Google Scholar 

  69. Brown, R., and Higgins, P.J.: ‘The equivalence of crossed complexes and oo-groupoids’, Cah. Topol. Géom. Diff. Cat. 22 (1981), 371–386.

    MathSciNet  MATH  Google Scholar 

  70. Carmody, S.M.: ‘Cobordism categories’, PhD Thesis Univ. Cambridge (1995).

    Google Scholar 

  71. Crane, L., and Yetter, D.N.: ‘A categorical construction of 4D topological quantum field theories’, in L.H. Kauffman and R.A. Baadhio (eds.): Quantum Topology, World Sci., 1993, pp. 131–138.

    Google Scholar 

  72. Crans, S.: ‘Generalized centers of braided and sylleptic monoidal 2-categories’, Adv. Math. 136 (1998), 183–223.

    MathSciNet  MATH  Google Scholar 

  73. Crans, S.: ‘A tensor product for Gray-categories’, Theory Appl. Categ. 5 (1999), 12–69.

    MathSciNet  MATH  Google Scholar 

  74. Crans, S.: ‘On braidings, syllepses, and symmetries’, Cah. Topol. Géom. Diff. Cat. (to appear).

    Google Scholar 

  75. Day, B.J., and Street, R.: ‘Monoidal bicategories and Hopf algebroids’, Adv. Math. 129 (1997), 99–157.

    MathSciNet  MATH  Google Scholar 

  76. Ehresmann, C.: Catégories et structures, Dunod, 1965.

    MATH  Google Scholar 

  77. Eilenberg, S., and Kelly, G.M.: ‘Closed categories’: Proc. Conf. Categorical Algebra, La Jolla, Springer, 1966, pp. 421–562.

    Google Scholar 

  78. Fischer, J.: ‘2-categories and 2-knots’, Duke Math. J. 75 (1994), 493–526.

    MathSciNet  MATH  Google Scholar 

  79. Gordon, R., Power, A.J., and Street, R.: ‘Coherence for tricategories’, Memoirs Amer. Math. Soc. 117, no. 558 (1995).

    Google Scholar 

  80. Gray, J.W.: ‘Coherence for the tensor product of 2-categories, and braid groups’, Algebra, Topology, and Category Theory (a collection of papers in honour of Samuel Eilenberg). Acad. Press, 1976, pp. 63–76.

    Google Scholar 

  81. Hermida, C., Makkai, M., and Power, J., On weak higher dimensional categories, http://hypatia.dcs.qmw.ac.Uk/authors/M/MakkaiM/papers/multitopicsets/.

  82. Johnson, M.: ‘Pasting diagrams in n-categories with applications to coherence theorems and categories of paths’, PhD Thesis Univ. Sydney, Australia (1987).

    Google Scholar 

  83. Johnson, M.: ‘The combinatorics of n-categorical pasting’, J. Pure Appl. Algebra 62 (1989), 211–225.

    MathSciNet  MATH  Google Scholar 

  84. Joyal, A.: ‘Disks, duality and Θ-categories’, Preprint and Talk at the AMS Meeting in Montréal (September 1997).

    Google Scholar 

  85. Joyal, A., and Street, R.: ‘Tortile Yang-Baxter operators in tensor categories’, J. Pure Appl. Algebra 71 (1991), 43–51.

    MathSciNet  MATH  Google Scholar 

  86. Joyal, A., and Street, R.: ‘Braided tensor categories’, Adv. Math. 102 (1993), 20–78.

    MathSciNet  MATH  Google Scholar 

  87. Kapranov, M.M., and Voevodsky, V.A.: ‘Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (List of results)’, Cah. Topol. Géom. Diff. Cat. 32 (1991), 11–27.

    MathSciNet  MATH  Google Scholar 

  88. Kapranov, M.M., and Voevodsky, V.A.: ‘Groupoids and homotopy types’, Cah. Topol. Géom. Diff. Cat. 32 (1991), 29–46.

    MathSciNet  MATH  Google Scholar 

  89. Kapranov, M.M., and Voevodsky, V.A.: ‘2-Categories and Zamolodchikov tetrahedra equations’: Proc. Symp. Pure Math., Vol. 56, Amer. Math. Soc., 1994, pp. 177–259.

    Google Scholar 

  90. Kapranov, M.M., and Voevodsky, V.A.: ‘Braided monoidal 2-categories and Manin-Schechtman higher braid groups’, J. Pure Appl. Algebra 92 (1994), 241–267.

    MathSciNet  MATH  Google Scholar 

  91. Kassel, C.: Quantum groups, No. 155 in Graduate Texts Math. Springer, 1995.

    MATH  Google Scholar 

  92. Kelly, G.M.: Basic concepts of enriched category theory, No. 64 in Lecture Notes London Math. Soc. Cambridge Univ. Press, 1982.

    MATH  Google Scholar 

  93. Kharlamov, V., and Turaev, V.: ‘On the definition of the 2-category of 2-knots’, Transl. Amer. Math. Soc. 174 (1996), 205–221.

    MathSciNet  Google Scholar 

  94. Langford, L.: ‘2-Tangles as a free braided monoidal 2-category with duals’, PhD Thesis Univ. California at Riverside (1997).

    Google Scholar 

  95. Loday, J.-L.: ‘Spaces with finitely many non-trivial homotopy groups’, J. Pure Appl. Algebra 24 (1982), 179–202.

    MathSciNet  MATH  Google Scholar 

  96. Mackay, M.: ‘Spherical 2-categories and 4-manifold invariants’, Adv. Math. 143 (1999), 288–348.

    MathSciNet  Google Scholar 

  97. MacLane, S.: Possible programs for categorists, Vol. 86 of Lecture Notes Math., Springer, 1969, pp. 123–131.

    Google Scholar 

  98. Marmolejo, F.: ‘Distributive laws for pseudomonads’, Theory Appl. Categ. 5 (1999), 91–147.

    MathSciNet  MATH  Google Scholar 

  99. May, P.: The geometry of iterated loop spaces, Vol. 271 of Lecture Notes Math., Springer, 1972.

    Google Scholar 

  100. McIntyre, M., and Trimble, T.: ‘The geometry of Gray-categories’, Adv. Math. (to appear).

    Google Scholar 

  101. Power, A.J.: ‘An n-categorical pasting theorem’, in A. Carboni, M.C. Pedicchio, and G. Rosolini (eds.): Category Theory, Proc. Como 1990, Vol. 1488 of Lecture Notes Math., Springer, 1991, pp. 326–358.

    Google Scholar 

  102. Power, A.J.: ‘Why tricategories?’, Inform. Comput. 120 (1995), 251–262.

    MathSciNet  MATH  Google Scholar 

  103. Reshetikhin, N.Yu., and Turaev, V.G.: ‘Ribbon graphs and their invariants derived from quantum groups’, Comm. Math. Phys. 127 (1990), 1–26.

    MathSciNet  MATH  Google Scholar 

  104. Roberts, J.E.: ‘Mathematical aspects of local cohomology’: Proc. Colloq. Operator Algebras and Their Application to Math. Physics, Marseille 1977, CNRS, 1979.

    Google Scholar 

  105. Shum, M.C: ‘Tortile tensor categories’, J. Pure Appl. Algebra 93 (1994), 57–110, PhD Thesis Macquarie Univ. Nov. 1989.

    MathSciNet  MATH  Google Scholar 

  106. Street, R.: ‘The algebra of oriented Simplexes’, J. Pure Appl. Algebra 49 (1987), 283–335.

    MathSciNet  MATH  Google Scholar 

  107. Street, R.: ‘Parity complexes’, Cah. Topol. Géom. Diff. Cat. 32 (1991), 315–343, Corrigenda: 35 (1994) 359–361.

    MathSciNet  MATH  Google Scholar 

  108. Street, H.: ‘Higher categories, strings, cubes and simplex equations’, Appl. Categorical Struct. 3 (1995), 29–77 and 303.

    MathSciNet  MATH  Google Scholar 

  109. Street, R.: ‘Categorical structures’, in M. Hazewinkel (ed.): Handbook of Algebra, Vol. I, Elsevier, 1996, pp. 529–577.

    Google Scholar 

  110. Tamsamani, Z.: ‘Sur des notions de n-categorie et n-groupoide non-stricte via des ensembles multi-simpliciaux’, PhD Thesis Univ. Paul Sabatier, Toulouse (1996), Also available on alg-geom 95–12 and 96–07.

    Google Scholar 

  111. Trimble, T.: ‘The definition of tetracategory’, Handwritten diagrams (August 1995).

    Google Scholar 

  112. Turaev, V.G.: ‘The Yang-Baxter equation and invariants of links’, Invent. Math. 92 (1988), 527–553.

    MathSciNet  MATH  Google Scholar 

  113. Walters, R.F.C.: ‘Sheaves on sites as Cauchy-complete categories’, J. Pure Appl. Algebra 24 (1982), 95–102.

    MathSciNet  MATH  Google Scholar 

  114. Alexandrov, P.S. (ed.): Die Hilbertschen Probleme, Geest&Portig, 1979, New ed.: H. Deutsch, 1998. (Translated from the Russian.)

    MATH  Google Scholar 

  115. Anosov, D.V., and Bolibrukh, A.A.: The Riemann-Hilbert problem, Vieweg, 1994.

    MATH  Google Scholar 

  116. Arnol’d, V.I., and Il’yashenko, Yu.S.: ‘Ordinary differential equations’, in D.V. Anosov and V.I. Arnol’d (eds.): Dynamical systems I, Springer, 1988, pp. 7–148.

    Google Scholar 

  117. Artin, E.: ‘Uber die Zerlegung definiter Funktionen in Quadrate’, Abh. Math. Sem. Univ. Hamburg 5 (1927), 100–115.

    Google Scholar 

  118. Beauville, A.: ‘Equations diffrentielles à points singuliers réguliers d’apras Bolybrukh’, Sem. Bourbaki 1992/3 (1993), 103–120.

    MathSciNet  Google Scholar 

  119. Bernstein, S.N.: ‘Sur la nature analytique des solutions des équations aux dérivées parteilies des second ordre’, Math. Ann. 59 (1904), 20–76.

    MathSciNet  MATH  Google Scholar 

  120. Bieberbach, L.: ‘Über die Bewegungsgruppen des n-dimensionalen euklidisches Raumes met einem endlichen Fundamentalbereich’, Gött. Nachr. (1910), 75–84.

    Google Scholar 

  121. Bricard, R.: ‘Sur une question de géométrie relative aux polyèdres’, Nouv. Ann. Math. 15 (1896), 331–334.

    Google Scholar 

  122. Browder, F.E. (ed.): Mathematical developments arising from Hilbert’s problems, Amer. Math. Soc., 1976.

    Google Scholar 

  123. Conway, J.H., and Sloane, N.J.A.: Sphere packings, lattices and groups, Springer, 1988.

    MATH  Google Scholar 

  124. Dehn, M.: ‘Uber den Rauminhalt’, Math. Ann. 55 (1901), 465–478.

    MathSciNet  Google Scholar 

  125. Deligne, P.: Equations différentielles à points singuliers réguliers, Springer, 1970.

    MATH  Google Scholar 

  126. Fel’dman, N.I., and Nestorenko, Yu.V.: Transcendental numbers, Springer, 1998.

    MATH  Google Scholar 

  127. Gleason, A.M.: ‘Groups without small subgroups’, Ann. of Math. 56 (1952), 193–212.

    MathSciNet  MATH  Google Scholar 

  128. Golomb, S.W.: ‘Tiling rectangles with polyominoes’, Math. Intelligencer 18, no. 2 (1996), 38–47.

    MathSciNet  MATH  Google Scholar 

  129. Heesch, H.: ‘Aufbau der Ebene aus kongruenten Bereiche’, Nachr. Ges. Wiss. Göttingen, Neue Ser. 1 (1935), 115–117.

    Google Scholar 

  130. Hilbert, D.: ‘Mathematische Probleme’, Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten) 3 (1900), 253–297, Reprint: Archiv Math. Physik 3:1 (1901), 44–63; 213–237; also: Gesammelte Abh., dritter Band, Chelsea, 1965, pp. 290–329.

    Google Scholar 

  131. Hilbert, D.: ‘Mathematical problems’, Bull. Amer. Math. Soc. 8 (1902), 437–479, Text on the web: http://aleph0.clarku.edu/djoyce/hilbert.

    MathSciNet  MATH  Google Scholar 

  132. Hirschfeld, J.: ‘The nonstandard treatment of Hilbert’s fifth problem’, Trans. Amer. Math. Soc. 321 (1990), 379–400.

    MathSciNet  MATH  Google Scholar 

  133. Holzapfel, R.-P.: The ball and some Hilbert problems, Birkhäuser, 1995.

    MATH  Google Scholar 

  134. Il’yashenko, Yu.: Finiteness theorems for limit cycles, Amer. Math. Soc., 1991.

    MATH  Google Scholar 

  135. Ilyashenko, Yu.and Yakovenko, S. (eds.): Concerning the Hilbert 16th problem, Amer. Math. Soc., 1995.

    MATH  Google Scholar 

  136. Kantor, J.-M.: ‘Hilbert’s problems and their sequels’, Math. Intelligencer 18, no. 1 (1996), 21–34.

    MathSciNet  MATH  Google Scholar 

  137. Kapranov, M.M.: ‘Analogies between the Langlands correspondence and topological quantum field theory’, in S. Gindikhin (ed.): Funct. Anal. on the Eve of the 21st Cen-turyy, Vol. I, Birkhäuser, 1995, pp. 119–151.

    Google Scholar 

  138. Kershner, R.B.: ‘On paving the plane’, Amer. Math. Monthly 75 (1968), 839–844.

    MathSciNet  MATH  Google Scholar 

  139. Knapp, A.W.: ‘Introduction to the Langlands program’, in T.N. Bailey et al. (eds.): Representation theory and automorphic forms, Amer. Math. Soc., 1997, pp. 245–302.

    Google Scholar 

  140. Lawrence, R.J.: ‘An introduction to topological field theory’, in L.H. Kaufmann (ed.): The interface of knots and physics, Amer. Math. Soc., 1996, pp. 89–128.

    Google Scholar 

  141. Montgomery, D., and Zippin, L.: ‘Small subgroups of finite dimensional groups’, Ann. of Math. 56 (1952), 213–241.

    MathSciNet  MATH  Google Scholar 

  142. Oberguggenberger, M., and Rosinger, E.E.: ‘Solutions of continuous nonlinear PDE’s through order completion. Part I’, Univ. Pretoria (1991).

    Google Scholar 

  143. Petrovskij, I.G.: ‘Sur l’analyticité des solutions des systèmes d’équations différentielles’, Mat. Sb. 5 (1939), 3–70.

    Google Scholar 

  144. Pfister A.: ‘Zur Darstellung definiter Funktionen als Summe von Quadraten’, Invent. Math. 4 (1967), 229–237.

    MathSciNet  MATH  Google Scholar 

  145. Pheidas, T.: ‘Extensions of Hilbert’s tenth problem’, J. Symbolic Logic 59 (1994), 372–397.

    MathSciNet  MATH  Google Scholar 

  146. Pogorelov, A.V.: ‘A complete solution of Hilbert’s fourth problem’, Soviet Math. Dokl. 14 (1973), 46–49.

    MATH  Google Scholar 

  147. Pogorelov, A.V.: Hilbert’s fourth problem, Winston&Wiley, 1979.

    Google Scholar 

  148. Reinhardt, K.: ‘Zur Zerlegung Euklische Rume in kongruente Polytope’, Sitzungsber. Preuss. Akad. Wiss. (1928), 150–155.

    Google Scholar 

  149. Rosinger, E.E.: Non-linear partial differential equations, North-Holland, 1990.

    Google Scholar 

  150. Rosinger, E.E.: Parametric Lie group actions on global generalised solutions of nonlinear PDEs, Kluwer Acad. Publ., 1998.

    Google Scholar 

  151. Roussarie, R.: Bifurcation of planar vectorfields and Hilbert’s sixteenth problem, Birkhäuser, 1998.

    Google Scholar 

  152. Sah, C.-H.: Hilbert’s third problem: scissors congruence, Pitman, 1979.

    MATH  Google Scholar 

  153. Sawin, S.: ‘Links, quantum groups, and TQFT’s’, Bull. Amer. Math. Soc. 33, no. 4 (1996), 413–445.

    MathSciNet  MATH  Google Scholar 

  154. Schubert, H.C.H.: Kalkül der abzhlenden Geometrie, Teubner, 1879.

    Google Scholar 

  155. Schulte, E.: ‘Tilings’, in P.M. Gruber and J.M. Wills (eds.): Handbook of convex geometry, Vol. B, North-Holland, 1993, pp. 899–932.

    Google Scholar 

  156. Segal, G.: ‘The definition of conformai field theory’, in K. Bleuler and M. Werner (eds.): Differential Geometrical Methods in Theoretical Physiscs, Kluwer Acad. Publ., 1988, pp. 165–171.

    Google Scholar 

  157. Segal, G.: ‘Geometric aspects of quantum field theory’: Proc. Internat. Congress Math. Kyoto, 1990, Vol. II, Springer, 1991, pp. 1387–1396.

    Google Scholar 

  158. Shafarevich, I.R.: ‘General reciprocity laws’, Mat. Sb. 26 (1950), 13–146.

    Google Scholar 

  159. Szabo, Z.I.: ‘Hilbert’s fourth problem’, Adv. Math. 59 (1986), 185–301.

    MATH  Google Scholar 

  160. Thue, A.: ‘Uber die dichteste Suzammenstellung von kongruenten Kreisen in einer Ebene’, Skr. Vidensk-Selsk Christ. 1 (1910), 1–9.

    Google Scholar 

  161. Tijdeman, R.: ‘The Gel’fond-Baker method’, in F.E. Browder (ed.): Mathematical developments arising from Hilbert’s problems, Amer. Math. Soc., 1976, pp. 241–268.

    Google Scholar 

  162. Tóth, L. Fejes: ‘Uber einem geometrischen Satz’, Math. Z. 46 (1940), 79–83.

    Google Scholar 

  163. Turaev, V.G.: Quantum invariants of knots and 3-manifolds, W. de Gruyter, 1994, p. Chap. II.

    MATH  Google Scholar 

  164. Wightman, A.S.: ‘Hilbert’s sixth problem’, in F.E. Browder (ed.): Mathematical developments arising from Hilbert’s problems, Amer. Math. Soc., 1976, pp. 147–240.

    Google Scholar 

  165. Witten, E.: ‘Topological quantum field theory’, Comm. Math. Phys. 117 (1988), 353–386.

    MathSciNet  MATH  Google Scholar 

  166. Adams, M.R., Harnad, J., and Hurtubise, J.: ‘Integrable Hamiltonian systems on rational coadjoint orbits of loop algebras, Hamiltonian systems, transformation groups and spectral transform methods’: Proc. CRM Workshop, Montreal 1989, 1990, pp. 19–32.

    MathSciNet  Google Scholar 

  167. Beilinson, A.A., and Drinfel’d, V.G.: ‘Quantization of Hitchin’s fibration and Langlands program’, in A. Boutet de Monvel et al. (eds.): Algebraic and Geometric Methods in Math. Physics. Proc. 1st Ukrainian-French-Romanian Summer School, Kaciveli, Ukraine, Sept. I–I4 1993, Vol. 19 of Math. Phys. Stud., Kluwer Acad. Publ., 1996, pp. 3–7.

    Google Scholar 

  168. Bottacin, F.: ‘Symplectic geometry on moduli spaces of stable pairs’, Ann. Sci. Ecole Norm. Sup. 4 28 (1995), 391–433.

    MathSciNet  MATH  Google Scholar 

  169. Donagi, R., and Markman, E.: ‘Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles’, in M. Francaviglia et al. (eds.): Integrable Systems and Quantum Groups. Lectures at the 1st session of the Centro Internaz. Mat. Estivo (CIME), Mon-tecatini Terme, Italy, June 14–22 1993, Vol. 1620 of Lecture Notes Math., Springer, 1996, pp. 1–119.

    Google Scholar 

  170. Faltings, G.: ‘Stable G-bundles and projective connections’, J. Alg. Geometry 2 (1993), 507–568.

    MathSciNet  MATH  Google Scholar 

  171. Geemen, B. van, and Jong, A.J. de: ‘On Hitchin’s connection’, J. Amer. Math. Soc. 11 (1998), 189–228.

    MathSciNet  MATH  Google Scholar 

  172. Geemen, B. van, and Previato, E.: ‘On the Hitchin system’, Duke Math. J. 85, no. 3 (1996), 659–683.

    MathSciNet  MATH  Google Scholar 

  173. Hitchin, N.J.: ‘The self-duality equations on a Riemann surface’, Proc. London Math. Soc. 55 (1987), 59–126.

    MathSciNet  MATH  Google Scholar 

  174. Hitchin, N.J.: ‘Stable bundles and integrable systems’, Duke Math. J. 54 (1987), 91–114.

    MathSciNet  MATH  Google Scholar 

  175. Hitchin, N.J.: ‘Flat connections and geometric quantization’, Comm. Math. Phys. 131, no. 2 (1990), 347–380.

    MathSciNet  MATH  Google Scholar 

  176. Simpson, C.T.: ‘Moduli of representations of the fundamental group of a smooth projective variety I-II’, Publ. Math. IHES 79/80 (1994/5), 47–129;5–79.

    MathSciNet  Google Scholar 

  177. Yingchen Li, and Mulase, M.: ‘Hitchin systems and KP equations’, Internat. J. Math. 7, no. 2 (1996), 227–244

    MathSciNet  MATH  Google Scholar 

  178. Appel, K., Haken, W., and Koch, J: ‘Every planar map is four colorable. Part II: Reducibility’, Illinois J. Math. 21 (1977), 491–567.

    MathSciNet  MATH  Google Scholar 

  179. Babai, L., Fortnow, L., Levin, L., and Szegedy, M.: ‘Checking computation in polylogarithmic time’: 23rd ACM Symp. Theory of Computation, New Orleans, May, 1991, ACM, 1991, pp. 21–31.

    Google Scholar 

  180. Babai, L., Fortnow, L., and Lund, C: ‘Non-deterministic exponential time has two-prover interactive protocols’, Corn-put. Complexity 1 (1991), 3–40.

    MathSciNet  MATH  Google Scholar 

  181. Feige, U., Goldwasser, S., Lovasz, L., Safra, S., and Szegedy, M.: ‘Iterative proofs and the hardness of approximating cliques’, J. Assoc. Comput. Mach. 43, no. 2 (1996), 268–292.

    MathSciNet  MATH  Google Scholar 

  182. Gorenstein, D.: ‘The enormous theorem’, Scientific Amer. 253, no. 6 (1985), 104–115.

    MathSciNet  Google Scholar 

  183. Levin, L.: ‘One-way functions and pseudorandom generators’, Combinatorica 7, no. 4 (1987), 357–363.

    MathSciNet  MATH  Google Scholar 

  184. Lund, C., Fortnow, L., Karloff, H., and Nisan, N.: ‘Algebraic methods for interactive proof systems’, J. Assoc. Comput. Mach. 39, no. 4 (1992), 859–868.

    MathSciNet  MATH  Google Scholar 

  185. Shamir, A.: ‘IP=PSPACE’, J. Assoc. Comput. Mach. 39, no. 4 (1992), 869–877.

    MathSciNet  MATH  Google Scholar 

  186. Agranovsky, M., Berenstein, C., and Chang, B.C. ‘Morera theorem for holomorphic H p functions in the Heisenberg group’, J. Reine Angew. Math. 443 (1993), 49–89.

    MathSciNet  MATH  Google Scholar 

  187. Berenstein, C., Chang, D.C., Pascuas, D., and Zalcman L.: ‘Variations on the theorem of Morera’, Contemp. Math 137 (1992), 63–78.

    MathSciNet  Google Scholar 

  188. Berenstein, C., and Gay, R.: ‘Le probléme de Pompeiu local’, J. Anal. Math. 52 (1988), 133–166.

    MathSciNet  Google Scholar 

  189. Globevnik, J., and Stout, E.L.: ‘Boundary Morera theorems for holomorphic functions of several complex variables’, Duke Math. J. 64 (1991), 571–615.

    MathSciNet  MATH  Google Scholar 

  190. Zalcman, L.: ‘Offbeat integral geometry’, Amer. Math Monthly 87 (1980), 161–175.

    MathSciNet  MATH  Google Scholar 

  191. Zalcman, L.: ‘A bibliographic survey of the Pompeiu problem’, in B. Fuglede et al. (eds.): Approximation by Solutions of Partial Differential equations, Kluwer Acad. Publ., 1992, pp. 185–194.

    Google Scholar 

  192. Barnes, D., and Lambe, L.: ‘Fixed point approach to homological perturbation theory’, Proc. Amer. Math. Soc. 112 (1991), 881–892.

    MathSciNet  MATH  Google Scholar 

  193. Brown, E.H.: ‘Twisted tensor products’, Ann. of Math. 1 (1959), 223–246.

    Google Scholar 

  194. Brown, R.: ‘The twisted Eilenberg-Zilber theorem’: Celebrazioni Archimedee del Secolo XX, Simposio di Topologia, 1967, pp. 34–37.

    Google Scholar 

  195. Cartan, H.: ‘Algèbres d’Eilenberg-MacLane et homotopie’, Sém. Henri Cartan (1954/5).

    Google Scholar 

  196. Eilenberg, S., and MacLane, S.: ‘On the groups H(π,n) I’, Ann. of Math. 58 (1953), 55–106.

    MathSciNet  MATH  Google Scholar 

  197. Gugenheim, V.K.A.M.: ‘On the chain complex of a fibration’, Illinois J. Math. 3 (1972), 398–414.

    MathSciNet  Google Scholar 

  198. Gugenheim, V.K.A.M., and Lambe, L.: ‘Perturbation theory in differential homological algebra I’, Illinois J. Math. 33 (1989), 566–582.

    MathSciNet  MATH  Google Scholar 

  199. Gugenheim, V.K.A.M., Lambe L., and Stasheff, J.: ‘Algebraic aspects of Chen’s iterated integrals’, Illinois J. Math. 34 (1990), 485–502.

    MathSciNet  MATH  Google Scholar 

  200. Gugenheim, V.K.A.M., Lambe L., and Stasheff, J.: ‘Perturbation theory in differential homological algebra II’, Illinois J. Math. 35 (1991), 359–373.

    MathSciNet  Google Scholar 

  201. Gugenheim, V.K.A.M., and Munkholm, H.J.: ‘On the extended functoriality of Tor and Cotor’, J. Pure Appl. Algebra 4 (1974), 9–29.

    MathSciNet  MATH  Google Scholar 

  202. Hübschmann, J.: ‘The homotopy type of FΨq, the complex and symplectic cases’, Contemp. Math. 55 (1986), 487–518.

    Google Scholar 

  203. Hübschmann, J., and Kadeishvili, T.: ‘Small models for chain algebras’, Math. Z. 207, no. 2 (1991), 245–280.

    MathSciNet  MATH  Google Scholar 

  204. Johansson, J., and Lambe, L.: ‘Transferring algebra structures up to homology equivalence’, Math. Scand. 88, no. 2 (2001).

    Google Scholar 

  205. Lambe, L.: ‘Resolutions via homological perturbation’, J. Symbolic Comp. 12 (1991), 71–87.

    MathSciNet  MATH  Google Scholar 

  206. Lambe, L.: ‘Homological perturbation theory, Hochschild homology and formal groups’, Contemp. Math. 134 (1992).

    Google Scholar 

  207. Lambe, L.: ‘Resolutions that split off of the bar construction’, J. Pure Appl. Algebra 84 (1993), 311–329.

    MathSciNet  MATH  Google Scholar 

  208. Lambe, L., and Stasheff, J.: ‘Applications of perturbation theory to iterated fibrations’, Manuscripta Math. 58 (1987), 363–376.

    MathSciNet  MATH  Google Scholar 

  209. MacLane, S.: Homology, Vol. 114 of Grundl. Math. Wissenschaft., Springer, 1967.

    Google Scholar 

  210. Shih, W.: ‘Homology des espaces fibrés’, Publ. Math. IHES 13 (1962), 93–176.

    MATH  Google Scholar 

  211. Sullivan, D.: ‘Infinitesimal computations in topology’, Publ. Math. IHES 47 (1977), 269–331.

    MATH  Google Scholar 

  212. Batanin, M.A.: ‘Homotopy coherent category theory and A-structures in monoidal categories’, J. Pure Appl. Algebra 123 (1998), 67–103.

    MathSciNet  MATH  Google Scholar 

  213. Boardman, M.A., and Vogt, R.M.: Homotopy invariant algebraic structures, Vol. 347 of Lecture Notes Math., Springer, 1973.

    MATH  Google Scholar 

  214. Bourn, D., and Cordier, J.-M.: ‘A general formulation of homotopy limits’, J. Pure Appl. Algebra 29 (1983), 129–141.

    MathSciNet  MATH  Google Scholar 

  215. Bousfield, A.K., and Kan, D.M.: Homotopy limits, completions and localizations, Vol. 304 of Lecture Notes Math., Springer, 1972.

    MATH  Google Scholar 

  216. Cordier, J.-M.: ‘Sur la notion de diagramme homotopique-ment cohérent’, Cah. Topol. Géom. Différ. Cat. 23 (1982), 93–112.

    MathSciNet  MATH  Google Scholar 

  217. Cordier, J.-M., and Porter, T.: ‘Vogt’s theorem on categories of homotopy coherent diagrams’, Math. Proc. Cambridge Philos. Soc. 100 (1986), 65–90.

    MathSciNet  MATH  Google Scholar 

  218. Cordier, J.-M., and Porter, T.: ‘Maps between homotopy coherent diagrams’, Topol. Appl. 28 (1988), 255–275.

    MathSciNet  MATH  Google Scholar 

  219. Cordier, J.-M., and Porter, T.: ‘Homotopy coherent category theory’, Trans. Amer. Math. Soc. 349 (1997), 1–54.

    MathSciNet  MATH  Google Scholar 

  220. Lisica, J.T., and Mardešič, S.: ‘Coherent prohomotopy and strong shape theory’, Glasn. Mat. 19 (1984), 335–399.

    Google Scholar 

  221. May, J.P.: The geometry of iterated loop spaces, Vol. 271 of Lecture Notes Math., Springer, 1972.

    MATH  Google Scholar 

  222. Stasheff, J.: ‘Homotopy associativity of H-spaces I and II’, Trans. Amer. Math. Soc. 108 (1963), 275–292; 293–312.

    MathSciNet  Google Scholar 

  223. Vogt, R.M.: ‘Homotopy limits and colimits’, Math. Z. 134 (1973), 11–52.

    MathSciNet  MATH  Google Scholar 

  224. Ceri, S., Gottlob, G., and Tanca, L.: Logic programming and databases, Springer, 1990.

    Google Scholar 

  225. Chang, C.C., and Keisler, H.J.: Model theory, North-Holland, 1973.

    MATH  Google Scholar 

  226. Dowling, W.F., and Gallier, J.H.: ‘Linear-time algorithms for testing the satisfiability of propositional Horn formulae’, J. Logic Programming 3 (1984), 267–284.

    MathSciNet  Google Scholar 

  227. Ebbinghaus, H.-D., and Flum, J.: Finite model theory, Springer, 1995.

    MATH  Google Scholar 

  228. Fagin, R., and Vardi, Ma. Y.: ‘The theory of data dependencies: A survey’: Math. of Information Processing, Vol. 34 of Proc. Symp. Appl. Math., Amer. Math. Soc., 1986, pp. 19–71.

    Google Scholar 

  229. Fitting, M.: Computability theory, semantics and logic programming, Oxford Univ. Press, 1987.

    MATH  Google Scholar 

  230. Hodges, W.: ‘Logical features of Horn clauses’: Handbook of Logic in Artificial Intelligence and Logic Programming: Logical Foundations, Vol. 1, Oxford Sci. Publ., 1993.

    Google Scholar 

  231. Itai, A., and Makowsky, J.A.: ‘Unification as a complexity measure for logic programming’, J. Logic Programming 4 (1987), 105–117.

    MathSciNet  MATH  Google Scholar 

  232. Kowalski, R.: Logic for problem solving, North-Holland, 1997.

    Google Scholar 

  233. Makowsky, J.A.: ‘Why Horn formulas matter in computer science: initial structures and generic examples’, J. Comput. System Sci. 34 (1987), 266–292.

    MathSciNet  MATH  Google Scholar 

  234. Mal’tsev, A.I.: The metamathematics of algebraic systems. Collected Papers 1936–1967, North-Holland, 1971.

    MATH  Google Scholar 

  235. Padawitz, P.: Computing in Horn clause theories, Springer, 1988.

    MATH  Google Scholar 

  236. Papadimitriou, C: Computational complexity, Addison-Wesley, 1994.

    MATH  Google Scholar 

  237. Ahern, P., and Sarason, D.: ‘The H p spaces of a class of function algebras’, Acta Math. 117 (1967), 123–163.

    MathSciNet  MATH  Google Scholar 

  238. Ahern, P., and Sarason, D.: ‘On some hypodirichlet algebras of analytic functions’, Amer. J. Math. 89 (1967), 932–941.

    MathSciNet  MATH  Google Scholar 

  239. Barbey, H., and H. König: Abstract analytic function theory and Hardy algebras, No. 593 in Lecture Notes Math. Springer, 1977.

    MATH  Google Scholar 

  240. Wermer, J.: ‘Analytic disks in maximal ideal spaces’, Amer. J. Math. 86 (1964), 161–170.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers and Elliott H. Lieb for “Lieb-Thirring inequalities” and “Thomas-Fermi theory”

About this chapter

Cite this chapter

Hazewinkel, M. (2000). H. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1279-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1279-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5378-7

  • Online ISBN: 978-94-015-1279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics