Skip to main content

Abstract

Seven thermal protein complexes and the dialyzed products from one of these produced typical protocells (0.1–10 µm in diameter) on their surfaces when moistened with water. Protocells (about 0.5 µm in diameter) were visualized (800–1200x): almost instantly at 60 C; within a few min at 23 C; and, after about 15 min at 4 C. Protocells of about 3.0 µm diameter were observed associated with the thermal protein surfaces: within 30 sec to a few min at 60 C; after 4–10 min at 23 C; and, after 9 hr at 4 C. In all cases, the small protocells were free or in loose aggregates. The large protocells were often: free; linked in chains (filaments) or dendritic structures (5–15 protocells in the branched structures); or, more rarely, multi-linked protocellular clusters (15 or more protocells). This method of observing protocell formation provides opportunities for the study of factors involved in the self-assembly process and in protocell survival (e. g., effects of nutritional requirements for growth, differentiation, and reproduction).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox, S. W. 1988. The Emergence of Life: Darwinian Evolution from the Inside. Basic Books, New York.

    Google Scholar 

  2. Fox, S. W., P. R. Bahn, A. Pappelis, and B. Yu. 1996. Experimental retracement of terrestrial origin of an excitable cell: Was it predictable? In Chemical Evolution: Physics of the Origin and Evolution of Life, J. Chela-Flores and F. Raulin, Eds., Kluwer Academic Publishers, Dordrecht, pp. 21–32.

    Chapter  Google Scholar 

  3. Pappelis, A. and S. W. Fox. 1995. Domain Protolife: The Protocell Theory. In Evolutionary Biochemistry and Related Areas of Physicochemical Biology, B. F. Poglazov, B. I. Kurganov, M. S. Kritsky, and K. L. Gladilin, Eds., Bach Institute of Biochemistry and ANKO, Moscow, pp. 151–159.

    Google Scholar 

  4. Pappelis, A. and S. W. Fox. 1995. Domain Protolife: Protocells and metaprotocells within thermal protein matrices. In Chemical Evolution: Structure and Model of the First Cell, C. Ponnamperuma and J. Chela-Flores, Eds., Kluwer Academic Publishers, Dordrecht, pp. 129–132.

    Chapter  Google Scholar 

  5. Pappelis, A. and S. W. Fox. 1996. Thermal peptides as the initial genetic system. In Chemical Evolution: Physics of the Origin and Evolution of Life, J. Chela-Flores and F. Raulin, Eds., Kluwer Academic Publishers, Dordrecht, pp. 157–165.

    Chapter  Google Scholar 

  6. Kolesnikov, M. P. 1991. Proteinoid microspheres and the process of prebiological photophosphorylation. Origins of Life and Evolution of the Biosphere 21: 31–37.

    Article  CAS  Google Scholar 

  7. Woese, C. R. and G. E. Fox. 1977. The concept of cellular evolution. J. Mol. Evol. 10: 1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Becerra, A., S. Islas, J. I. Leguina, E. Silva, and A. Lazcano. 1997. Polyphyletic gene losses can bias backtracking characterizations of the cenancestor. J. Mol. Evol. 45: 115–117.

    Article  PubMed  CAS  Google Scholar 

  9. Mushegian, A. R. and E. V. Koonin. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA 93: 10268–10273.

    Article  PubMed  CAS  Google Scholar 

  10. Mushegian, A. R. and E. V. Koonin. 1997. Response. J. Mol. Evol. 45: 117–118.

    Article  CAS  Google Scholar 

  11. de Duve, C. 1991. Blueprint for a Cell: The Nature and Origin of Life. Burlington, NC, Neil Patterson Publishing.

    Google Scholar 

  12. Siefert, J. L., K. A. Martin, F. Abdi, W. R. Widger, and G. E. Fox. 1997. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J. Mol. Evol. 45: 467–472.

    Article  PubMed  CAS  Google Scholar 

  13. Ivanov, O. C. and B. Fortsch. 1986. Universal regularities in protein primary structure: preferences in bonding and periodicity. Origins of Life and Evolution of the Biosphere 17: 35–49.

    Article  PubMed  CAS  Google Scholar 

  14. Ivanov, O. C. 1993. Some proteins keep ‘living fossil’ pre-sequences. Origins of Life and Evolution of the Biosphere 23: 115–124.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pappelis, A., Fox, S.W., Grubbs, R., Bozzola, J. (1998). Animate Protocells from Inanimate Thermal Proteins. In: Chela-Flores, J., Raulin, F. (eds) Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5056-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5056-9_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6124-7

  • Online ISBN: 978-94-011-5056-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics