Skip to main content

Phytochromes: molecular structure, photoreceptor process and physiological function

  • Chapter

Summary

Phytochrome (P)—a unique photochromic pigment—mediates a great variety of photoregulation reactions in plants thus determining the strategy of their optimum light development, i.e. photomorphogenesis. The pigment molecule is a dimer whose identical monomers consist of a linear tetrapyrrole covalently bound to a ca 125 kDa water soluble protein comprising ca 1200 amino acid residues. The monomer is structurally divided into an N-terminal chromophore bearing domain responsible for light perception and a C-terminal domain responsible for dimerization and light stimulus transduction. The spectroscopical and photochemical properties of the pigment are determined by the specific chromophore-apoprotein interaction. Its photoperception function is based on the photoreversible phototransformation of the initial red-light—absorbing form (Pr) into a physiologically active far-red-light—absorbing form (Pfr). The Pr → Pfr conversion includes an energy storing photoreaction, which is cis-trans photoisomerization of the chromophore proceeding within several tens ps with participation of the singlet excited state, and a following branched dark stepwise protein relaxation leading to its conformationally restructured form. The functional activity of the Pfr form is connected with the rearrangement of a number of amino acid residues in the C-terminal. The transduction of the signal from the Pfr form includes activation of a putative primary receptor (G-proteins) and changes of the concentration of Ca2+ and cyclic guanosine 5′-phosphate (cGMP) leading eventually to the modulation of the rate of gene expression. Action of P as a light-regulated enzyme is also considered as a possible mechanism of signal transduction. The complex behaviour of plants under different light conditions and the multiple functions of P are believed to be connected, at least in part, with heterogeneity of the pigment in the cell and first of all with the existence of a small family of Ps (five or more depending on plant species) which are encoded by different genes but possess the same chromophore. The main ones, phytochromes A and B (phyA and phyB), perform different functions or complement each other in some responses as shown by the investigations of P mutants. PhyA itself is found to be heterogeneous: it consists of two spectroscopically, photochemically and functionally distinct species: the major soluble and labile phyA’ and a minor presumably membrane-associated and relatively stable phyA”. Dimeric structure of the photoreceptor is also suggested to be a potential source of the multiple action of the pigment. And finally, it is believed that photoreactions of the intermediates of the P cycle can modify the P functions. Thus, investigation of the structure-function relationship in the P molecule acquires now a new dimension for understanding of the physiological polyfunctionality of the pigment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnall, D.J., King, R.W., Whitelam, G.C., Boylan, M.T., Wagner D. and Quail P.H. 1995. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 108: 1495–1503.

    Article  CAS  PubMed  Google Scholar 

  • Ballare, C.L., Scopel, A.L., Jordan, E.T. and Vierstra, R.D. 1994. Signaling among neighboring plants and the development of size inequalities in plant populations. Proc. Natl. Acad. Sci. USA 91: 10094–10098.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, S.A., Quaggio, R.B. and Chua, N.H. 1995. Phytochrome signal-transduction: characterization of pathways and isolation of mutants. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 350: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Bhoo, S.H., Lapko, V.N., Wells, T.A., Sommer, D. and Song, P.-S. 1995. Phytochromes: structure and function. In: Tetrapyrrole Photoreceptors Freising, Germany, Book of Abstracts, O 22.

    Google Scholar 

  • Björling, S.C., Zhang, C.-F., Farrens, D.L., Song, P.-S. and Kliger, D.S. 1992. Time-resolved circular dichroism of native oat phytochrome intermediates. J. Am. Chem. Soc. 114: 4581–4588.

    Article  Google Scholar 

  • Botto, J.F., Sanchez, R.A., Whitelam, G.C. and Casal, J.J. 1996. Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiology 110: 439–444.

    CAS  PubMed  Google Scholar 

  • Bowler, C., Neuhaus, G., Yamagata, H. and Chua, N.H. 1994. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Bowler, C., Yamagata, H., Neuhaus, G. and Chua, N.H. 1994. Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev. 8: 2188–2202.

    Article  CAS  PubMed  Google Scholar 

  • Boylan, M.T. and Quail, P.H. 1991. Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc. Natl. Acad. Sci. USA 88: 10806–10810.

    Article  CAS  PubMed  Google Scholar 

  • Boylan, M., Bruce, W., Dehesh, K., Deng, X.-W., Parks, B., Sharrock, R., Somers, D., Tepperman, J., Wagner, D. and Quail, P.H. 1992. Structure and expression of phytochrome genes. In: Plant Photoreceptors and Photoperception. British Photobiology Society, St John’s College, Cambridge, September 20–23, 1992, 28 p.

    Google Scholar 

  • Boylan, M., Douglas, N. and Quail, P.H. 1994. Dominant negative suppression of Arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor. Plant Cell 6: 449–460.

    CAS  PubMed  Google Scholar 

  • Braslavsky, S.E. 1990. Phytochrome. In: Photochromism, Molecules and Systems (Eds. H. Dürr and H. Bouas-Laurent). pp. 738–755. Elsevier, New York.

    Google Scholar 

  • Braslavsky, S.E. 1995. Chromophore protein interactions in phytochromes. In: Tetrapyrrole Photoreceptors, Freising, Germany, Book of Abstracts, 0 21.

    Google Scholar 

  • Braslovsky, S.E., Gärtner, W. and Schaffner, K. 1997. Phytochrome photoconversion. Plant Cell Environ. 20: 700–706.

    Article  Google Scholar 

  • Brockmann, J. and Schäfer, E. 1982. Analysis of Pfr destruction in Amaranthus caudatus L.-Evidence for two pools of phytochrome. Photochem. Photobiol. 35: 555–558.

    Article  CAS  Google Scholar 

  • Casal, J.J. 1995. Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis. Planta 196: 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Casal, J.J., Sanchez, R.A., and Yanovsky, M.J. 1997. The function of phytochrome A. Plant Cell Environ., 20: 813–819.

    Article  CAS  Google Scholar 

  • Chen, E.F., Parker, W., Lewis, J.W., Song, P.S. and Kliger, D.S. 1993. Time-resolved UV circular dichroism of phytochrome A: Folding of the N-terminal region. J. Amer. Chem. Soc. 115: 9854–9855.

    Article  CAS  Google Scholar 

  • Chen, E.F., Lapko, V.N., Lewis, J.W., Song, P.S. and Kliger, D.S. 1996. Mechanism of native oat phytochrome photoreversion—a time-resolved absorption investigation. Biochemistry 35: 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Cherri, J.R., Hondred, D., Walker, J.M., Keller, J.M., Hershey, H.P. and Vierstra, R.D. 1993 Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structural and biological activity. Plant Cell 5: 565–575.

    Google Scholar 

  • Cherri, J.R. and Vierstra, R.D. 1994. The use of transgenic plants to examine phytochrome structure/function. In Kendrick and Kronenberg, 1994 pp. 271-300.

    Google Scholar 

  • Chory, J. 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet. 9: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Clough, R.C. and Vierstra, R.D. 1997. Phytochrome degradation. Plant Cell Environ., 20: 713–721.

    Article  CAS  Google Scholar 

  • Clough, R.C., Casal, J.J., Jordan, E.T., Christou, P. and Vierstra, R.D. 1995. Expression of functional oat phytochrome A in transgenic rice. Plant Physiol. 109: 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  • Deforce, L., Furuya, M. and Song, P.-S. 1993. Mutational analysis of the pea phytochrome A chromophore pocket: Chromophore assembly with apophytochrome A and photoreversibility. Biochemistry 32: 14165–14172.

    Article  CAS  PubMed  Google Scholar 

  • Deforce, L., Tokutomi, S. and Song, P.S. 1994. Phototransformation of pea phytochrome A induces an increase in alpha-helical folding of the apoprotein—comparison with a monocot phytochrome A and CD analysis by different methods. Biochemistry 33: 4918–4922.

    Article  CAS  PubMed  Google Scholar 

  • Deforce, L., Tomizawa, K.-I., Ito, N., Farrence, D., Song, P.-S. and Furuya, M. 1991. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc. Natl. Acad. Sci. USA 88: 10392–10396.

    Article  CAS  PubMed  Google Scholar 

  • Devlin, P.F., Halliday, K.J., Harber, N.P. and Whitelam, G.C. 1996. The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant J. 10: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  • Edgerton, M.D. and Jones, A.M. 1993. Subunit interactions in the carboxy-terminal domain of phytochrome. Biochemistry 32: 8239–8245.

    Article  CAS  PubMed  Google Scholar 

  • Eilfeld, P.H. and Eilfeld, P.G. 1988. Circular dichroism of phytochrome intermediates. Physiol. Plant. 74: 169–175.

    Article  CAS  Google Scholar 

  • Emmler, K., Stockhaus, J., Chua N.H. and Schäfer, E. 1995. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings. Planta 197: 103–110.

    Article  CAS  PubMed  Google Scholar 

  • Farrens, D.L., Holt, R.E., Rospendovski, B.N., Song, P.-S. and Cotton, T.M. 1989. Surface-Enhanced Resonance Raman Scattering (SERRS) spectroscopy applied to phytochrome and its model compounds. II. Phytochrome and phycocyanin chromophores. J. Am. Chem. Soc. 111: 9162–9169.

    Article  CAS  Google Scholar 

  • Foerstendorf, H., Scheer, H., Rüdiger, W., Schäfer, E. and Siebert, F. 1995. FT-IR difference spectroscopic studies of intermediates of the photoreaction of phytochrome. In: Tetrapyrrole Photoreceptors. Freising, Germany, Book of Abstracts, P 4.1.

    Google Scholar 

  • Franzes, S., White, M.J., Edgerton, M.D., Elliott, R.C. and Thompson, W.F. 1992. Initial characterization of a pea mutant with light-independent photomorphogenesis. Plant Cell 4: 1519–1530.

    Google Scholar 

  • Furuya, M. 1989. Molecular properties and biogenesis of phytochrome I and II. Adv. Biophys. 25: 133–167.

    Article  CAS  PubMed  Google Scholar 

  • Furuya, M. 1993. Phytochromes: their molecular species, gene families, and functions. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 44: 617–645.

    Article  CAS  Google Scholar 

  • Furuya, M. and Song, P.-S. 1994. Assembly and properties of holophytochrome. In Kendrick and Kronenberg, 1994 pp. 105-140.

    Google Scholar 

  • Gärtner, W. 1995. Effect of site directed mutagenesis in phytochrome (phy-A from oat) on the kinetics of the light induced transformation. In: Tetrapyrrole Photoreceptors, Freising, Germany, Abstracts, P 4.2.

    Google Scholar 

  • Gärtner, W., Ruddat, A., P. Schmidt, P., Braslvsky, S.E., Schaffner, K., Quail, P.H. and C. Gatz 1995. Recombinant phytochromes from potato. In: European Symposium on Photomorphogenesis in Plants, Sitges, Barcelona, Spain. Abstracts, p. 28.

    Google Scholar 

  • Gärtner, W., Schmidt, P., Worm, K., Westphal, U.H., Braslavsky, S.E., Schaffner, K. and Quail, P.H. 1995. Effect of chromophore substitution on the kinetics of phytochrome A from oat. In: European Symposium on Photomorphogenesis in Plants, Sitges, Barcelona, Spain. Abstracts, p. 79.

    Google Scholar 

  • Gensch, T., Braslavsky, S.E. and Schaffner, K. 1996. The photoequilibrium between Pr and the intermediate I700 of 124 kDa-phytochrome A from oat. Efficience of the photobackreaction I700 → Pr. 12th International Congress on Photobiology, Vienna, Austria, Abstracts, O 19.

    Google Scholar 

  • Hamazato, F., Shinomura, T., Hanzava, H., Chory, J. and Furuya, M. 1996. Phytochrome species differentially regulate cab gene expression in Arabidopsis thaliana. In: 12th International Congress on Photobiology, Vienna, Austria, Abstracts, P82.

    Google Scholar 

  • Harter, K., Frohnmeyer, H., Kircher, S., Kunkel, T., Muhlbauer, S. and Schäfer, E. 1994. Light induces rapid changes of the phosphorylation pattern in the cytosol of evacuolated parsley protoplasts. Proc. Natl. Acad. Sci. USA 91: 5038–5042.

    Article  CAS  PubMed  Google Scholar 

  • Heim, B., Jabben, M. and Schäfer, E. 1981. Phytochrome destruction in dark-and light-grown Amaranthus caudatus seedlings. Photochem. Photobiol. 34: 89–93.

    CAS  Google Scholar 

  • Heyer, A.G., Mozley, D., Landschutze, V, Thomas, B., and Gatz, C. 1995. Function of phytochrome A in potato plants as revealed through the study of transgenic plants. Plant Physiol. 109: 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C., Gärtner, W., Towner, P., Braslavsky, S.E. and Schaffner, K. 1994. Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin. Eur. J. Biochem. 223: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Hillman, W.S. 1967. The physiology of phytochrome. Annu. Rev. Plant Physiol. 18: 301–324.

    Article  CAS  Google Scholar 

  • Holzwarth, A.R., Venuti, E., Braslavsky, S.E. and Schaffner, K. 1992. The phototransformation process in phytochrome. 1. Ultrafast fluorescence component and models for the intital Pr → Pfr transformation steps in native phytochrome. Biochim. Biophys. Acta 1140: 59–68.

    CAS  Google Scholar 

  • Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gärtner, W., Wilde, A. and Börner, T. 1997. A prokoryotic phytochrome Nature 386: 663.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, Y., Rüdiger, W., Grimm, R. and Furuya, M. 1990. The phototransformation pathway of dimeric oat phytochrome from the red-light-absorbing form to the far-red-absorbing form at physiological temperature is composed of four intermediates. Photochem. Photobiol. 52: 1077–1083.

    Article  CAS  Google Scholar 

  • Jackson, S.D., Heyer, A., Dietze, J. and Prat, S. 1996. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant Journal. 9: 159–166.

    Article  CAS  Google Scholar 

  • Johnson, E., Bradley, M., Harberd, N. P. and Whitelam, G.C. 1994. Photoresponses of lightgrown phyA mutants of Arabidopsis. Phytochrome A is required for the perception of daylength extensions. Plant Physiol. 105: 141–149.

    CAS  Google Scholar 

  • Jones, A.M. and Edgerton, M.D. 1994. The anatomy of phytochrome, a unique photoreceptor in plants. Semin. Cell Biol. 5: 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, B.R. 1992. Cellular interactions of phytochrome and their functional significance. In: Plant Photoreceptors and Photoperception, British Photobiology Society, St John’s College, Cambridge, 21 p.

    Google Scholar 

  • Jordan, E.T., Cherry, J.R., Walker, J.M. and Vierstra, R.K. 1996. The amino-terminus of phytochrome A contains two distinct functional domains. Plant Journal. 9: 243–257.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, E.T., Hatfield, P.M., Hondred, D., Talon, M., Zeevaart, J.A. and Vierstra, R.D. 1995. Phytochrome A overexpression in transgenic tobacco. Correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol. 107: 797–805.

    Article  CAS  PubMed  Google Scholar 

  • Kandori, H., Yoshihara, K. and Tokutomi, S. 1992. Primary process of phytochrome: initial step of photomorphogenesis in green plants. J. Am. Chem. Soc. 114: 10958–19959.

    Article  CAS  Google Scholar 

  • Kendrick, R.E., Kerckhoffs, L.H.J., Van Tuinen, A. and Koornneef, M. 1997. Photomorphogenic mutants of tomato. Plant Cell Environ. 20: 746–751.

    Article  CAS  Google Scholar 

  • Kendrick, R.E. and Kronenberg, G.H.M. (eds.) 1994. Photomorphogenesis in Plants. 2nd Edition. Kluwer Academic Publishers, Dordrecht/Boston/London.

    Book  Google Scholar 

  • Kendrick, R.E. and Nagatani, A. 1991. Phytochrome mutants. Plant Journal 1: 133–139.

    Article  Google Scholar 

  • Kendrick, R.E. and Spruit, C.J.P. 1977. Phototransformations of phytochrome. Photochem. Photobiol. 26: 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Kolukisaoglu, H.U., Marx, S., Wiegmann, C., Hanelt, S. and Schneider-Poetsch, H.A. 1995. Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum. J. Mol. Evol. 41: 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Koornneef, M. and Kendrick, R.E. 1994. Photomorphogenic mutants of higher plants. In Kendrick and Kronenberg, 1994 pp. 601-630.

    Google Scholar 

  • Kunkel, T., Henning, L., Poppe, C. and Schäfer, E. 1997. Evidence for a dimer based mechanism of different physiolocal actions of phyA and phyB. European Symposium on Photomorphogenesis, July 12–18. Programme and Abstract, 1: 15.

    Google Scholar 

  • Kunkel, T., Speth, V., Buche, C. and Schäfer, E. 1995. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. J. Biol. Chem. 270: 20193–20200.

    Article  CAS  PubMed  Google Scholar 

  • Lagarias, J.C., Lagarias, D.M., Murphy, J.T., Yeh, K.-C. and Wu, S.-H. 1996. Structure-function analysis of the phytochrome photoreceptor. In: 12th International Congress on Photobiology, Vienna, Austria, Abstracts, S159.

    Google Scholar 

  • Lamparter, T., Lutterbuse, P., Schneider-Poetsch, H.A.W. and Hertel, R. 1992. A study of membrane-asociated phytochrome: hydrophobicity test and native size determination. Photochem. Photobiol. 56: 697–707.

    Article  CAS  Google Scholar 

  • Li, L. and Lagarias, J.C. 1994. Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 91: 12535–12539.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Murphy, J.T. and Lagarias, J.C. 1995. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry 34: 7923–7930.

    Article  CAS  PubMed  Google Scholar 

  • Lindemann, P., Schlamann, W., Braslavsky, S.E. and Schaffner, K. 1992. The effects of Ca2+ and Ca2+-calmodulin on the decay of the intermediates I-700(1, 2) from native Avena phytochrome. J. Photochem. Photobiol. B: Biol. 14: 293–310.

    Article  CAS  Google Scholar 

  • Lippitsch, M.E., Hermann, G., Brunner, H., Müller, E. and Aussenegg, F.R. 1993. Picosecond events in the phototransformation of phytochrome—a time-resolved absorption study. J. Photochem. Photobiol. B: Biol. 18: 17–25.

    Article  CAS  Google Scholar 

  • Lippitsch, M.E., Riegler, H., Aussenegg, F.R., Hermann, G. and Müller, E. 1988. Picosecond absorption and fluorescence studies on large phytochrome from rye. Biochem. Physiol. Pflanz. 183: 1–6.

    CAS  Google Scholar 

  • Millar, A.J., McGrath, R.B., and Chua, N.H. 1994. Phytochrome phototransduction pathways. Annu. Rev. Genet. 28: 325–349.

    Article  CAS  PubMed  Google Scholar 

  • Nakasako, M., Wada, M., Tokutomi, S., Yamamoto, K.T., Sakai, J., Kataoka, M., Tokunaga, F. and Furuya, M. 1990. Quaternary structure of pea phytochrome I dimer studied with small-angle X-ray scattering and rotary-shadowing electron microscopy. Photochem. Photobiol. 52: 3–12.

    Article  CAS  Google Scholar 

  • Nakazawa, M. and Manabe, K. 1996. Carboxy-terminal region of phytochrome A can be divided into physiologically functional parts, “active” and “regulatory” sites. In: 12th International Congress on Photobiology, Vienna, Austria, Abstracts, P89.

    Google Scholar 

  • Nakazawa, M., Kosugi, K. and Manabe, K. 1996. Characterization of C-terminal deleted phytochrome A. In: 12th International Congress on Photobiology, Vienna, Austria, Abstracts, P93.

    Google Scholar 

  • Nakazawa, M., Hayashi, H., Yoshida, Y. and Manabe, K. 1993. Indentification of surface-exposed parts of red-light-and far-red-light-absorbing forms of native pea phytochrome by limited proteolysis. Plant Cell Physiol. 34: 83–91.

    CAS  PubMed  Google Scholar 

  • Parker, W., Goebel, P., Ross, C.G., Song P.-S. and Stezowski, J.J. 1994. Molecular modeling of phytochrome using constitutive C-phycocyanin from Fremyella diplosiphon as a putative structural template. Bioconjugate Chem. 5: 21–30.

    Article  CAS  Google Scholar 

  • Parks, B.M., Quail, P.H. and Hangarter, R.P. 1996. Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol. 110: 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Partis, M.D. and Grimm, R. 1990. Computer analysis of phytochrome sequences from five species: implication for the mechanism of action. Z. Naturforsch. 45c: 987–998.

    Google Scholar 

  • Pasentsis, K., Paulo, N., Algarra, P. and Thümmler, F. 1995. Characterization and expression of two different phytochrome types in the moss Ceratodon purpureus. In: Tetrapyrrole Photoreceptors, Freising, Germany, Book of abstracts, P4.3.

    Google Scholar 

  • Peters, J.L. 1992. Photomorphogenetic mutants of higher plants. Ph.D. Thesis, 117, p. Wageningen Agricultural Univ., Wageningen.

    Google Scholar 

  • Poppe, C., Ehmann, B., Frohnmeyer, H., Furuya M., and Schäfer, E. 1994. Regulation of phytochrome A mRNA abundance in parsley seedlings and cell-suspension cultures. Plant Mol. Biol. 26: 481–486.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, L.H. 1994. Distribution and localization of phytochrome within the plant. In Kendrick and Kronenberg, 1994, pp. 163-186.

    Google Scholar 

  • Pratt, L.H., Cordonnier-Pratt, M.-M., Hauser B. and Caboche, M. 1995. Tomato contains two differentially expressed genes encoding B-type photochromes, neither of which can be considered an ortholog of Arabidopsis phytochrome B. Planta 197: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, L.H., Cordonnier-Pratt, M.-M., Kelmenson, P.M., Lazarova, G.I., Kubota, T. and Alba, R.M. 1997. The phytochrome gene family in tomato (Solanum lycopersicum L.). Plant Cell Environ. 20: 672–677.

    Article  CAS  Google Scholar 

  • Pratt, L.H., Cordonnier M.-M., Wang, Y.-C., Stewart, S.J. and Moyer, M. 1991. Evidence for three phytochrome in Avena. In: Phytochrome Properties and Biological Action (Editors B. Thomas and C.B. Johnson) NATO ASI series H: Cell Biology, Springer, Berlin. 50, pp. 39–55.

    Chapter  Google Scholar 

  • Quail, PH. 1991. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25: 389–409.

    Article  CAS  PubMed  Google Scholar 

  • Quail, P.H. 1994. Phytochrome genes and their expression. In Kendrick and Kronenberg, 1994, pp. 71-104.

    Google Scholar 

  • Quail, P.H. 1997. An emerging molecular map of the phytochromes, Plant Cell Environ., 20: 657–665.

    Article  CAS  Google Scholar 

  • Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. and Wagner, D. 1995. Phytochromes: photosensory perception and signal transduction. Science 268: 675–680.

    Article  CAS  PubMed  Google Scholar 

  • Reed, J.W., Nagpal, P. and Chory, J. 1992. Searching for phytochrome mutants. Photochem. Photobiol. 56: 833–838.

    Article  Google Scholar 

  • Robson, P.R.H. and Smith, H. 1996. Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls. Plant Physiol. 110: 211–216.

    CAS  PubMed  Google Scholar 

  • Rospendovski, B.N., Farrens, D.L., Cotton, T.M. and Song, P.-S. 1989. Surface Enhanced Resonance Raman Scattering as a probe of the structural differences between the Pr and Pfr forms of phytochrome. FEBS Lett. 258: 1–4.

    Article  Google Scholar 

  • Rüdiger, W. 1992. Events in the phytochrome molecule after irradiation. Photochem. Photobiol. 56: 803–810.

    Article  PubMed  Google Scholar 

  • Rüdiger, W. and López-Figueroa, F. 1992. Photoreceptors in algae. Photochem. Photobiol. 55: 949–954.

    Article  Google Scholar 

  • Rüdiger, W. and Thümmler, F. 1991. Phytochrome, the visual pigment of plants. Angew. Chem. Int. Ed. Eng. 30: 1216–1228.

    Article  Google Scholar 

  • Rüdiger, W. and Thümmler, F. 1994. The phytochrome chromophore. In Kendrick and Kronenberg, 1994, pp. 51-70.

    Google Scholar 

  • Sakamoto, K. and Nagatani, A. 1997. Nuclear localization activity of phytochrome B. Plant J. 10: 859–868.

    Article  Google Scholar 

  • Schaffner, K., Braslavsky, S.E. and Holzwarth, A.R. 1990. Photophysics and photochemistry of phytochrome. Adv. Photochem. 15: 229–277.

    Article  CAS  Google Scholar 

  • Schäfer., E., Kunkel, T. and Frohnmeyer. H. 1997. Signal transduction in the photocontrol of chalcone synthase gene expression. Plant Cell Environ. 20: 722–727.

    Article  Google Scholar 

  • Schendel, R, Dörnemann, D., Rüdiger, W. and Sineshchekov, V. 1996. Comparative investigations of the effect of 5-aminolevulinate feeding on phytochrome and protochlorophyll(ide) content in dark-grown seedlings of barley, cucumber and cress. J. Photochem. Photobiol. B: Biology. 36: 245–253.

    Article  CAS  Google Scholar 

  • Scheuerlein, R. and Braslavsky, S.E. 1985. Induction of seed germination in Lactuca sativa L. by nanosecond dye laser flashes. Photochem. Photobiol. 42: 173–178.

    Article  Google Scholar 

  • Scheuerlein, R., Inoue, Y. and Furuya, M. 1988. Intermediates in the photoconversion of functional phytochrome in fern spores of Dryopteris. II. In Vivo-kinetics of the decay of I700 and the formation of Pfr as studied with a double-laser apparatus. Photochem. Photobiol. 48: 519–524.

    Article  CAS  Google Scholar 

  • Scurlock, R.D., Braslavsky, S.E. and Schaffner, K. 1993. A phytochrome study using two-laser/two-color flash photolysis: I700 is a mandatory intermediate in the Pr → Pfr phototransformation. Photochem. Photobiol. 57: 690–695.

    Article  CAS  Google Scholar 

  • Scurlock, R.D., Evans, C.H., Braslavsky, S.E. and Schaffner, K.A. 1993. A phytochrome phototransformation study using two-laser/two-color flash photolysis: analysis of the decay mechanism of 1700. Photochem. Photobiol. 58: 106–115.

    Article  CAS  Google Scholar 

  • Serlin, B.S., Lew, R.R., Krasnoshtein, F., Krol, J. and Sumida, K.D. 1996. Phytochrome activation of K+ channels and chloroplast rotation in Mougeotia—the escape times. Plant Cell Physiol. 37: 175–179.

    Article  CAS  Google Scholar 

  • Siebert, F., Grimm, R., Rüdiger, W., Schmidt, G. and Scheer, H. 1990. Infrared spectroscopy of phytochrome and model pigments. Eur. J. Biochem. 194: 921–928.

    Article  CAS  PubMed  Google Scholar 

  • Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M. and Furuya, M. 1996. Action spectra for phytochrome A-and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 8129–8133.

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov, V.A. 1994. Two spectroscopically and photochemically distinguishable phytochromes in etiolated seedlings of monocots and dicots. Photochem. Photobiol. 59: 77–86.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A. 1995a. Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. Biochim. Biophys. Acta 1228: 125–164.

    Article  Google Scholar 

  • Sineshchekov, V.A. 1995b. Evidence for the existence of two phytochrome A populations. J. Photochem. Photobiol., B: Biology 28: 53–55.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A. and Akhobadze, V.V. 1992. Phytochrome states in etiolated pea seedlings: fluorescence and primary photoreactions at low temperatures. Photochem. Photobiol. 56: 743–749.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A. and Rüdiger, W. 1992. Fluorescence spectroscopy of stable and labile phytochrome in stems and roots of etiolated cress seedlings. Photochem. Photobiol. 56: 735–742.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A., Frances, S. and White, M.J. 1995. Fluorescence and photochemical characterization of phytochrome in de-etiolated pea mutant lip. J. Photochem. Photobiol., B: Biology 28: 47–51.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A., Heyer, A.G. and Gatz, C. 1996. Phytochrome states in transgenic potato plants with altered phyA levels. J. Photochem. Photobiol., B: Biol. 34: 137–142.

    Article  CAS  Google Scholar 

  • Sineshchekov, V., Hughes, J., Hartmann, E. and Lamparter, T. 1998a. Fluorescence and photochemistry of recombinant phytochrome from the cyanobacterium Synechocystis. Photochem. Photobiol. 67: 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov, V., Lamparter, T. and Hartmann, E. 1994. Evidence for the existence of membrane-associated phytochrome in the cell. Photochem. Photobiol. 60, 561–520.

    Article  Google Scholar 

  • Sineshchekov, V.A., Lapko, V.N., Sineshchekov, A.V., Kozhukh, G.V. and Udal’tsov, A.V. 1990. J. Photochem. Photobiol. 5: 219–229.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A., Ogorodnikova, O.B., Devlin, P.F. and Whitelam, G.C. 1998b. Fluorescence spectroscopy and photochemistry of phytochromes A and B in wild-type, mutant and transgenic strains of Arabidopsis thaliana. J. Photochem. Photobiol. B: Biol. 42: 133–142.

    Article  CAS  Google Scholar 

  • Sineshchekov, V.A. and Sineshchekov, A.V. 1990. Different photoactive states of the red phytochrome form in the cells of etiolated pea and oat seedlings. J. Photochem. Photobiol. B: Biol. 5: 197–217.

    Article  CAS  Google Scholar 

  • Smith, H. 1995. The adaptive significance of the phytochromes: evolutionary implications. In: European Symposium on Photomorphogenesis in Plants, Sitges, Barcelona, Spain. Abstracts, p. 15.

    Google Scholar 

  • Smith, H. (ed.) 1997. Photomorphogenesis (Special issue). Plant Cell Environ. 20: 657–840.

    Google Scholar 

  • Smith, H. and Fork, D.C. 1992. Direct measurement of phytochrome photoconversion intermediates at high photon fluence rates. Photochem. Photobiol. 56: 599–607.

    Article  CAS  Google Scholar 

  • Smith, H. and Whitelam, G.C. 1990. Phytochrome, a family of photoreceptors with multiple physiological roles. Plant Cell Environ. 13: 695–707.

    Article  CAS  Google Scholar 

  • Smith, H. and Whitelam, G.C. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ. 20: 840–844.

    Article  Google Scholar 

  • Somers, D.E. and Quail, P.H. 1995. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J. 7: 413–427.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, D. and Song, P.-S. 1990. The chromophore topography and secondary structure of 124-kDa Avena phytochrome probed by Zn2+-induced chromophore modification. Biochemistry 29: 1943–1948.

    Article  CAS  PubMed  Google Scholar 

  • Song, P.-S. 1985. Primary molecular events in aneural cell photoreception. In: Sensory Perception and Transduction in Aneural Organisms. (Colombetti, G., Lenci, F. and Song, P.-S., eds.) pp. 47–59. Plenum Press, Londo

    Chapter  Google Scholar 

  • Song, P.-S. (1988) The molecular topography of phytochrome. J. Photochem. Photobiol., B: Biol. 2: 43–57.

    Article  CAS  Google Scholar 

  • Song, P.-S. 1994, Phytochrome as a light switch for gene expression in plants. The Spectrum 7: 2–7.

    Google Scholar 

  • Song, P.-S., Park, M.H. and Furuya, M. 1997. Chromophore: apoprotein interactions in phytochrome A. Plant Cell Environ., 20: 707–712.

    Article  CAS  Google Scholar 

  • Song, P.-S., Sommer, D., Wells, T.A., Hahn, T.R., Park, H.J. and Bhoo, S.H. 1996. Light signal transduction mediated by phytochromes—preliminary studies and possible approaches. Indian J. of Biochem. Biophys. 33: 1–19.

    Article  CAS  Google Scholar 

  • Sopory, S.K. and Munshi, M. 1998. Protein kinases and phosphatases and their role in cellular signalling in plants. Crit. Rev. Pl. Sci. (in press).

    Google Scholar 

  • Starostzik, C. and Marwan, W. 1995. A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum. FEBS Lett. 370: 146–148.

    Article  CAS  PubMed  Google Scholar 

  • Terry, M.J., Hall, J.L. and Thomas, B. 1992. The association of type 1 phytochrome with wheat leaf plasma membranes. J. Plant Physiol. 140: 691–698.

    Article  CAS  Google Scholar 

  • Terry, M.J., McDowell, M.T. and Lagarias, J.C. 1995. (3Z)-and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J. Biol. Chem. 270: 11111–11118.

    Article  CAS  PubMed  Google Scholar 

  • Thümmler, F., Algarra, P. and Fobo, G.M. 1995a. Sequence similarities of phytochrome to protein kinases: implication for the structure, function and evolution of the phytochrome gene family. FEBS Lett. 357: 149–155.

    Article  PubMed  Google Scholar 

  • Thümmler, F., Dufner, M., Kreisl, P., and Dittrich, P. 1992. Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which encodes a putative light-regulated protein kinase. Plant Mol. Biol. 20: 1003–1017.

    Article  PubMed  Google Scholar 

  • Thümmler, F., Herbst, R., Algarra, P. and Ullrich, A. 1995b. Analysis of the protein kinase activity of moss phytochrome expressed in fibroblast cell culture. Planta 197: 592–596.

    Article  PubMed  Google Scholar 

  • Tokutomi, S., Kandori, H. and Yoshihara, K. 1995. A novel primary photoproduct from the excited state of red-absobing form of phytochrome based on picosecond flash photolysis. In: Tetrapyrrole Photoreceptors, Freising, Germany, Abstracts, P 4.6.

    Google Scholar 

  • Tokutomi, S. and Mimuro, M. 1989. Orientation of the chromophore transition moment in the 4-leaved shape model for pea phytochrome molecule in the red-light absorbing form and its rotation induced by the phototransformation to the far-red-light absorbing form. FEBS Lett. 255: 350–353.

    Article  CAS  Google Scholar 

  • Tokutomi, S., Sugimoto, T. and Mimuro, M. 1992. Amodel for the molecular structure and orientation of the chromophore in a dimeric phytochrome molecule. Photochem. Photobiol. 56: 545–552.

    Article  CAS  Google Scholar 

  • Tomizawa, A.K., Stockhaus, J., Chua, N.H. and Furuya, M. 1995. Spectrophotometric and molecular properties of mutated rice phytochrome. Plant Cell Physiol. 36: 511–516.

    CAS  PubMed  Google Scholar 

  • Van Der Woude, W.J. (1987) Application of the dimeric model of phytochrome action to high irradiance responses. In: Phytochrome and Photoregulation in Plants (Edited by M. Furuya), pp. 249–258. Academic Press, Tokyo.

    Google Scholar 

  • Vierstra, R.D. and Quail, P.H. 1983a. Photochemistry of 124 kilodalton Avena phytochrome in vitro. Plant. Physiol. 72: 264–267.

    Article  CAS  PubMed  Google Scholar 

  • Vierstra, R.D. and Quail, P.H. 1983b. Purification and initial characterization of 124 kdalton phytochrome from Avena. Biochemistry, 22: 2498–2505.

    Article  CAS  Google Scholar 

  • Vierstra, R.D., Jordan, E.T. and Clough, R.C. 1996. Analysis of structural domains required for phytochrome function by in vitro mutagenesis. In: 12th International Congress on Photobiology Vienna, Austria, Abstracts, S164.

    Google Scholar 

  • Volotovsky, I.D. 1992. Phytochrome-regulatory photoreceptor of plants. 168 p. “Navuka i Tekhnika”, Minsk, Beloruss.

    Google Scholar 

  • Wada, M., Grolig, F. and Haupt, W. 1993. Light-oriented chloroplast positioning. Contribution to progress in photobiology. J. Photochem. Photobial. B: Biol. 17: 3–25.

    Article  CAS  Google Scholar 

  • Wada, M., Kanegae, T., Nozue, K. and Fukuda, S. 1997. Cryptogam photochromes. Plant Cell Environ. 20: 685–690.

    Article  CAS  Google Scholar 

  • Wagner, D. and Quail, P.H. 1995 Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc. Natl. Acad. Sci. USA 92: 8596–8600.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, D., Tepperman, J.M. and Quail, P.H. 1991. Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3: 1275–1288.

    CAS  PubMed  Google Scholar 

  • Wells, T.A., Nakazawa, M., Manabe, K. and Song, P.S. 1994. A conformational change associated with the phototransformation of Pisum phytochrome A as probed by fluorescence quenching. Biochemistry 33: 708–712.

    Article  CAS  PubMed  Google Scholar 

  • Wester, L., Somers, D.E., Clack, T. and Sharrock, R.A. 1994. Transgenic complementation of the hy3 phytochrome B mutation and response to PHYB gene copy number in Arabidopsis. Plant J. 5: 261–272.

    Article  CAS  PubMed  Google Scholar 

  • Whitelam, G.C. 1995. The roles of phytochromes A and B and other phytochromes. In: European Symposium on Photomorphogenesis in Plants, Sitges, Barcelona, Spain. Abstracts, p. 51.

    Google Scholar 

  • Whitelam G.C. and Devlin, P.F. 1997. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ. 20: 752–758.

    Article  CAS  Google Scholar 

  • Wu, S.-H. and Lagarias, J.C. 1997. The phytochrome photoreceptor in the green alga Mesotaenium caldariorum: implication for a conserved mechanism of phytochrome action. Plant Cell Environ. 20: 691–699.

    Article  CAS  Google Scholar 

  • Xu, Y., Parks, B.M., Short, T.W., and Quail, P.H. 1995. Missense mutations define a restricted segment in the C-terminal domain of phytochrome A critical to its regulatory activity. Plant Cell 7: 1433–1443.

    CAS  PubMed  Google Scholar 

  • Yang, Y.Y., Nagatani, A., Zhao, Y.J., Kang, B.J., Kendrick, R.E. and Kamiya, Y. 1995. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana (L). Plant Cell Physiol. 36: 1205–1211.

    CAS  PubMed  Google Scholar 

  • Yeh, K.-C., Wu, S.-H., Murphy, T. and Lagarias, J.C. 1997. A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1507.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C.-F., Farrens, D.L., Bjorling, S.C., Song, P.-S. and Kliger, D.S. 1992. Time-resolved absorption studies of native etiolated oat phytochrome. J. Am. Chem. Soc. 114: 4569–4580.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sineshchekov, V.A. (1999). Phytochromes: molecular structure, photoreceptor process and physiological function. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics