Skip to main content

On the Design of a Control Architecture for an Autonomous Mobile Robot

  • Chapter
Advances in Intelligent Autonomous Systems

Abstract

In this chapter we present a model of a hierarchic control architecture for Autonomous Mobile Robots (AMR) as well as its use in the design of an autonomous wheeled mobile platform for transportation in an industrial environment. This model results from successive incremental refinements consolidated over the years with the experience accumulated in a number of R&D projects (e.g., [1], [2]) with special emphasis for the NATO funded PO-Robot project [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pascoal, A. Bjerrun, A. and Coudeville, M,: “MARIUS: An Autonomous Underwater Vehicle for Environmental Surveying”, Procs. of the MAST and Euromar Market, CEC, Brussels, Belgium, 1993, pp. 764-758.

    Google Scholar 

  2. Sousa, J. Borges, Pereira, F. Lobo and Silva, E. Pereira: “A Dynamically Configurable Architecture for the Control of an AUV”, Procs. of the OCEANS 94 Conf., Brest, France, Sept., 1994, pp 131–136.

    Google Scholar 

  3. Silva, E. Pereira, Sousa, J. Borges, Pereira, F. Lobo, Sequeira, J. and Ribeiro, I.: “On the Design of the Po-Robot System”, Procs. of the IEEE Intelligent Vehicles Symposium 94, Paris, France, 1994.

    Google Scholar 

  4. Sousa, J. Borges, Pereira, F. Lobo and Silva, E. Pereira: “Software Architectures for Autonomous Vehicles: Survey”, Workshop AUVs, Porto, Portugal, Sept. 93.

    Google Scholar 

  5. Harmon, S. Y.: “Architectures: Designers versus Implementors”, in Procs. of the Workshop On Architectures for Intelligent Control Systems, IEEE Int. Conf. on Robotics and Automation, Nice, France, May 1992, pp.1–6.

    Google Scholar 

  6. Chatila, R. Alami, Degallaix and H. Haruelle: “Integrated Planning and Execution Control of Autonomous Robot Actions”, Procs. IEEE Int. Conf. on Rob. & Autom., Nice, France, 1992.

    Google Scholar 

  7. Saridis, G., Graham, J.: “Linguistic Decision Schemata for Intelligent Robots,” Automatica, vol. 20, n° 1, 1984, pp.12–126.

    Article  Google Scholar 

  8. Heninger, K.: “Specifying Software Requirements for Complex Systems: New techniques and their applications”, IEEE Trans. Soft. Eng., vol. SE-6, n° 1, Jan. 1980, pp.2–12.

    Article  Google Scholar 

  9. Pressman, R.: Software Engineering: A Practitioner's Approach, Macgraw-Hill Int. Editions, 1992.

    Google Scholar 

  10. IEEE P1220 Trial-and-Use Standard for Systems Engineering, IEEE Standards Dept.,NY, 1994.

    Google Scholar 

  11. Simon, D., Espiau, B., Castillo, C., Kapellos, K.: “Computer-Aided Design of a Generic Robot Controller Handling Reactivity and Real-Time Control Issues”, IEEE Trans. on Control Systems Technology, vol. 1, n°4, Dec. 1993, pp. 213–229.

    Article  Google Scholar 

  12. Simon, D., Kapellos, K.., Espiau, B.: “Formal Verification of Mission and Tasks Application to Underwater Robotics”, pre-print, Workshop on Hybrid Systems, Grenoble, France, Sept. 1995.

    Google Scholar 

  13. Ying, Z.: “A Foundation for the Design and Analysis of Robotic Systems and Behaviours”, PhD thesis, British Columbia University, Sept. 1994.

    Google Scholar 

  14. Antsaklis, P.: “Final Report of the Task Force on Intelligent Control, Technical Committee on Intelligent Control”, IEEE Control Systems Society, December 1993.

    Google Scholar 

  15. Henzinger, T., Manna, Z., and Pnueli, A.: “Towards Refining Temporal Specifications into Hybrid Systems”, in: Hybrid Systems, Grossman, R., Nerode, A., Ravn, A., and Rischel, H., eds., Lect. Notes in Comp. Sci. n° 736, Springer Verlag, 1993, pp.60–76.

    Google Scholar 

  16. Henzinger, T., Ho, P.: “Model Checking Strategies for Linear Hybrid Systems”, 7th Int. Conf. Indust. & Eng. Applic. of A.I. & Expert Syst., Austin, TX, May 1994.

    Google Scholar 

  17. Ravn, A., Rischel, H., Hansen, K.: “Specifying and Verifying Requirements for Real-Time Systems”, IEEE Trans. Soft. Eng., vol.18, N°1, Jan. 1993, pp.41–55.

    Article  Google Scholar 

  18. Samson, C, Espiau, B., Le Borge, M.: “Robot Control: The Task Function Approach”, Oxford University Press, 1990.

    Google Scholar 

  19. Alur, R., Courcoubetis, C., Henzinger, T. and Ho, P.: “Hybrid Automata: An Algorithm Approach to the Specification and Verification of Hybrid Systems”, Hybrid Systems, R. Grossman, A. Nerode, R. Ravn and H. Rischel eds., Lect. Notes in Comp. Sci. n° 736, Springer Verlag, 1993, pp.209–229.

    Google Scholar 

  20. Espiau, B., Simon, D., Kapellos, K..: “Formal Verification of Missions and Tasks”, pre-print, INRIA, 1995.

    Google Scholar 

  21. Albus J.: “Outline for a Theory of Intelligence,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, n°. 3, pp. 473–509, May/June 1991.

    Article  MathSciNet  Google Scholar 

  22. Albus, J.: “System Description and Design Architecture for Multiple Autonomous Undersea Vehicles”, NIST Tech. Note 1251, Washington, DC, Sept., 1988.

    Google Scholar 

  23. Albus, J., Quintero R.: “Towards a Reference Model Architecture for Real-Time Intelligent Control Systems (ARTICS)”, Robotics and Manufacturing, New York, ASME, vol.3, 1990.

    Google Scholar 

  24. Saridis, G.: “Foundation of the Theory on Intelligent Control,” Procs. IEEE Workshop on Intelligent Control, Rensselaer Polytechnique Institute, Troy, N.Y. 1985, pp.23–28.

    Google Scholar 

  25. Saridis, G.: “Analytic Formulation of the Principle of Increasing Intelligent with Decreasing Precision for Intelligent Machines,” Automatica, Vol. 25, n°. 3, pp.461–467, 1989.

    Article  MATH  Google Scholar 

  26. Wang, F., Saridis G.: “A Coordination Theory for Intelligent Machines”, Automatica, Vol. 20, N° 5, 1990, pp.833–844.

    Article  Google Scholar 

  27. Wang, F., Kyriakopoulos, K., A. Tsolkas and G. Saridis.: “A Petri-net for an Intelligent Mobile Robot”, IEEE Trans. on Systems, Man and Cybernetics, Vol. 21, No. 4, July/August 1991, pp.777–789.

    Article  Google Scholar 

  28. Lima, P.: “Feedback-Based Performance Improvement of Intelligent Control Systems”, Procs. Int. URIC Program Development, US/Portugal Workshop, March, 2-3, 1995, pp.105–110.

    Google Scholar 

  29. Chatila, R., Ingrand, F. and Alami, R.: “Mission Planning and Execution Control for Intervention Robots”, Procs. of the International Program Development in Undersea Robotics & Intelligent Control — a joint US/Portugal Workshop, March, 2-3, 1995, Lisboa, Portugal, pp.38–43.

    Google Scholar 

  30. Giralt, G., Sobek, R. P., Chatila, R.: “A Multi-Level Planning and Navigation System for a Mobile Robot: a First Approach to HILARE”, Procs. 6th IJCAI, Tokyo, Japan, August 1979.

    Google Scholar 

  31. Giralt, G., Chatila, R., Vaisset, M., “An Integrated Navigation and Motion Control System for Autonomous Multisensory Mobile Robots”, Procs 1st Int. Symp. on Robotics Research, M.I.T., Michael Brady, Richard Paul, Eds, 1983.

    Google Scholar 

  32. Noreils, F., Chatila, R.: “Plan Execution Monitoring and Control Architecture for Mobile Robots”, IEEE Trans. Rob. & Autom., Vol.11No.2, April 1995, pp.255–266.

    Article  Google Scholar 

  33. Fleury, Sara: “Architecture de Contrôle Distribuée Pour Robots Mobiles Autonomes: Principes, Conception et Applications”, PhD thesis, Université Paul Sabatier de Toulouse, Rapport LAAS N° 96156, 1996.

    Google Scholar 

  34. Alami, R., Chatila, R. and Freeman, P.: “Task Level Teleprogramming for Intervention Robots”, Procs of Mobile Robots for Subsea Environments; IARP, Monterey, CA, 1991, pp 119–136.

    Google Scholar 

  35. Brooks R., “Achieving Artificial Intelligence Through Building Robots,” M.I.T. Artificial Intelligence Laboratory, Memo 899, May 1986.

    Google Scholar 

  36. Brooks, R., “A Robust Layered Control System for a Mobile Robot”, IEEE Journal of Robotics and Automation, Vol. RA-2, 1, March 1986.

    Google Scholar 

  37. Laengle, TH. and Lueth, T.C.: “Decentralized Control of Distributed Intelligent Robots and Subsystems”..

    Google Scholar 

  38. Lueth. T.C. and U. Rembold: “Extensive Manipulation Capabilities and Reliable Behaviour at Autonomous Robot Assembly”, IEEE Int. Conference on Robotics and Automation, San Diego, CA,1994

    Google Scholar 

  39. Schneider, S., Chen, V. and Pardo-Catellote, G.: “The ControlShell Components — Based Real-Time, Programming System”, IEEE Int. Conference on Automation, Nagoya, Japan, 1995.

    Google Scholar 

  40. Stewart, D., Khosla, P.: “The Chimera Methodology: Designing Dynamically Reconfigurable and Reusable Real-time Software using Port-Based Objects”: Journal of Software Engineering and Knowledge Engineering, June 1996, pp.249–257.

    Google Scholar 

  41. Yoerger, D., Newman, J., Slotine: J., “Supervisory Control System for the JASON ROV”, IEEE J. Ocean. Eng., vol. OE-11, No. 3, July 1986, pp.392–399.

    Article  Google Scholar 

  42. Saridis, G. and K. Valavanis: “Analytic Design of Intelligent Machines”, Automatica, Vol. 24, 1988, pp.123–133.

    Article  MATH  Google Scholar 

  43. Po-Robot: “Multi-Purpose Portuguese Flexible Mobile Robot, Working Plan Proposal”, Institute of Systems and Robotic, Porto,Portugal,1995

    Google Scholar 

  44. “Vehicle Management System”: Po-Robot Task 3 Report, Institute of Systems and Robotic, Porto, Portugal, 1997.

    Google Scholar 

  45. Ostroff, J.S.: “Synthesis of Controllers for Real-time Discrete Event Systems”, Procs. of the 28th Conference on Decision and Control, Tampa, Florida, December 1989, pp. 138–144

    Google Scholar 

  46. Ostroff, J.S. and Wonham W., M.: “A Framework for Real-Time Discrete Event Control”, in IEEE Transactions on Automatic Control, Vol 35 N. 4, Abril 1990, pp.386–397.

    Article  MathSciNet  MATH  Google Scholar 

  47. Sousa. J.: “On the Control of Remus Vehicle”, Remus Project Report, Institute of Systems and Robotic, Porto, Portugal, 1997.

    Google Scholar 

  48. “Functional System”: Po-Robot Sub-Task ST2/T3 Report, Institute of Systems and Robotic, Porto,Portugal, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pereira da Silva, E., Pereira, F.L., Sousa, J.B. (1999). On the Design of a Control Architecture for an Autonomous Mobile Robot. In: Tzafestas, S.G. (eds) Advances in Intelligent Autonomous Systems. International Series on Microprocessor-Based and Intelligent Systems Engineering, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4790-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4790-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6012-7

  • Online ISBN: 978-94-011-4790-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics