Skip to main content

Quantum Mechanical Modeling of Structure Evolution of Transition Metal Clusters and Metallocarbohedrenes

  • Chapter
Book cover Implications of Molecular and Materials Structure for New Technologies

Part of the book series: NATO Science Series ((NSSE,volume 360))

  • 390 Accesses

Abstract

Ab initio quantum-mechanical modeling based on density functional theory (DFT) was used to study transition metal clusters and metallo-carbohedrenes (MetCars). Combined with the state-of-the-art spectroscopic experiments, DFT calculations are capable of yielding much insight into the structures, chemical bonding and growth mechanisms of these clusters. Two specific cluster systems were investigated in detail: one involves small chromium clusters and another contains titanium carbides. Exhaustive structural search was performed by fully optimizing a variety of cluster geometries. For the chromium clusters, we found that a tightly-bound Cr2 dimer plays a key role in determining the cluster structures. A dimer growth route is discovered for clusters up to Cr11, at which a structural transition occurs from the dimer growth to a bulk-like body-centered-cubic structure. The uncovered structural evolution is consistent with the currently available experimental observations. For MetCars, we found that three factors, i.e., the C2 dimer, cubic framework and layered structures, play an essential role in determining the structures and chemical bonding of the titanium carbide clusters. A growth pathway from Ti3C8 to Ti13C22 with Ti4C8, Ti6C13, Ti7C13 and Ti9C15 as intermediates is thus proposed. Both theory and experiments suggest that the cubic layered growth with C2 dimers can lead to a new type of highly stable one-dimensional quantum wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. G. Castleman, Jr., and K. H. Bowen, Jr., J. Phys. Chem. 100, 12911 (1996).

    Article  CAS  Google Scholar 

  2. I. M. L. Billas, A. Chatelain, and W. A. de Heer, Science 265, 1682 (1994).

    Article  CAS  Google Scholar 

  3. W.A. de Heer, P. Milani, and A. Chatelain, Phys. Rev. Lett. 65, 488 (1990).

    Article  Google Scholar 

  4. D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rohlfing, and A. Kaldor, Phys. Rev. B 32, 7290 (1985).

    Article  CAS  Google Scholar 

  5. See, for example, Physics and Chemistry of Finite Systems: From Clusters to Crystals, edited by P. Jena, S. N. Khanna, and B. K. Rao (Kluwer Academic, Boston, 1992), Vols. I and II.

    Google Scholar 

  6. L. S. Wang, S. Li, and H. Wu, J. Phys. Chem. 100, 19211 (1996).

    Article  CAS  Google Scholar 

  7. H. Wu, S. R. Desai, and L. S. Wang, Phys. Rev. Lett. 76, 212 (1996).

    Article  CAS  Google Scholar 

  8. H. Wu, and L. S. Wang, Phys. Rev. Lett. 77, 2436 (1996).

    Article  CAS  Google Scholar 

  9. S. U, H. Wu, and L. S. Wang, J. Am. Chem. Soc. 119, 7417 (1997).

    Article  Google Scholar 

  10. H. Cheng, and L. S. Wang, Phys. Rev. Lett. 77, 51 (1996).

    Article  CAS  Google Scholar 

  11. L. S. Wang, and H. Cheng, Phys. Rev. Lett. 119, 7417 (1997).

    Google Scholar 

  12. L. S. Wang, X. B. Wang, H. Wu, and H. Cheng, J. Am. Chem. Soc. (submitted).

    Google Scholar 

  13. L. S. Wang, H. Cheng, and J. Fan, J. Chem. Phys. 102, 9480 (1995).

    Article  CAS  Google Scholar 

  14. L. S. Wang, H. Wu, and H. Cheng, Phys. Rev. B 55, 12884 (1997).

    Article  CAS  Google Scholar 

  15. J. Baker, M. Muir, and J. Andzelm, J. Chem. Phys. 102, 2063 (1995).

    Article  CAS  Google Scholar 

  16. T. Ziegler., Chem. Rev. 91, 651 (1991), and references therein.

    Article  CAS  Google Scholar 

  17. V. Barone, and L. Orlandini, J. Phys. Chem. 98, 13185 (1994).

    Google Scholar 

  18. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. A., J. Chem. Phys. 98, 5612 (1993).

    Article  CAS  Google Scholar 

  19. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  20. G. J. Lamming, V. Termath, and N. C. Handy, J. Chem. Phys. 99, 8765 (1993).

    Article  Google Scholar 

  21. G. Fitzgerald, and J. Andzelm, J. Phys. Chem. 95, 10531 (1991).

    Article  CAS  Google Scholar 

  22. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).

    Article  CAS  Google Scholar 

  23. E. P. Kundig, M. Moskovits, G. Ozin, Nature 254, 503 (1975).

    Article  Google Scholar 

  24. L. Andersson, Chem. Phys. Lett. 237, 212 (1995).

    Article  CAS  Google Scholar 

  25. S. M. Casey and D. G. Leopold, J. Chem. Phys. 97, 816 (1993).

    Article  CAS  Google Scholar 

  26. M. M. Goodgame and W. A. Goddard, Phys. Rev. Lett. 54, 661 (1985).

    Article  CAS  Google Scholar 

  27. C.-X. Su and P. B. Armentrout, J Chem. Phys. 99, 6506 (1993).

    Article  CAS  Google Scholar 

  28. B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr., Science, 255, 1411 (1992); B. C. Guo, S. Wei, J. Purnell, S. Buzza, and A. W. Castleman, Jr., Science 256, 511 (1992).

    Article  CAS  Google Scholar 

  29. J. S. Pilgrim, and M. A. Duncan, J. Am. Chem. Soc. 115, 6958 (1993).

    Article  CAS  Google Scholar 

  30. R. W. Grimes, and J. D. Gale, J. Chem. Soc. Chem. Commun., 1222 (1992); T. T. Rantala, D. A. Jelski, J. R. Bowser, X. Xia, and T. F. George, Z Phys. D 26, S255 (1992); L. Pauling, Proc.Natl. Acad. Sci. USA 89, 8175 (1992); Z. Lin, and M. B. Hall, J. Am. Chem. Soc. 114, 10054 (1992); B. V. Reddy, S. N. Khanna, and P. Jena, Science 258, 640 (1992); M. Methfessel, M. van Schilfgaarde, and M. Scheffler, Phys. Rev. Lett. 71, 209 (1993); P. J. Hay, J. Phys. Chem. 97, 3081 (1993; R. W. Grimes, and J. D. Gale, ibid. 97, 4616 (1993); A. Khan, ibid. 99, 4923 (1995); L. Lou, T. Guo, P. Nordlander, and R. E. Smalley, J. Chem. Phys. 99, 5301 (1993).

    Google Scholar 

  31. A. Ceulemans, and P. W. Fowler, J. Chem. Soc. Faraday Trans. 88, 2797 (1992); M. Rohmer, P. de Vaal, and M. Benard, J. Am. Chem. Soc. 114, 9696 (1992); H. Chen, M. Feyereisen, X. P. Long, and G. Fitzgerald, Phys. Rev. Lett. 71, 1732 (1993).

    Article  CAS  Google Scholar 

  32. D. J. Dance, Chem. Soc. Chem. Commun. 1779 (1992); M. Rohmer, M. Benard, C. Henriet, C. Bo, and J. Poblet, ibid. 1182, (1993); I. Dance, J. Am. Chem. Soc. 118, 2699, 6309 (1996); Z. Un, and M. B. Hall, ibid. 115, 11165 (1993); M. Rohmer, M. Benard, C. Bo, and J. Pöblet, ibid. 117, 508 (1995); J. Phys. Chem. 99, 16913 (1995).

    Google Scholar 

  33. S. Wei, B. C. Guo, J. Purnell, S. Buzza, and A. W. Castleman, Jr., J. Phys. Chem. 96, 4166 (1992); B. D. May, S. F. Cartier, and A. W. Castleman Jr., Chem. Phys. Lett. 242, 265 (1995); S. F. Cartier, B. D. May, and A. W. Castleman Jr., ibid. 116, 5295 (1994); J. Chem. Phys. 100, 5384 (1994); K. P. Kerns, B. C. Guo, H. T. Deng, and A. W. Castleman Jr., ibid. 101, 8529 (1994); S. F. Cartier, B. D. May, and A. W. Castleman Jr., ibid. 104, 3423 (1996); J. Phys. Chem. 100, 8175 (1996); K. P. Kerns, B. C. Guo, H. T. Deng, and A. W. Castleman, Jr., J. Am. Chem. Soc. 117, 4026 (1995); H. T. Deng, K. P. Kerns, and A. W. Castleman, Jr., ibid. 118, 446 (1996).

    Article  CAS  Google Scholar 

  34. J. S. Pilgrim, and M. A. Duncan, J. Am. Chem. Soc. 115, 4395 (1993); J. S. Pilgrim, L. R. Brock, and M. A. Duncan, J. Phys. Chem. 99, 544 (1995); L. R. Brock, and M. A. Duncan, ibid. 100, 5654 (1996).

    Article  CAS  Google Scholar 

  35. Y. G. Byun, S. A. Lee, and B. S. Freiser, J. Am. Chem. Soc. 100, 14281 (1996); C. S. Yeh, S. Afzaal, S. A. Lee, Y. G. Byun, and B. S. Freiser, J. Am. Chem. Soc. 116, 8806 (1994); Y. G. Byun, and B. S. Freiser, ibid. 118, 3681 (1996).

    CAS  Google Scholar 

  36. S. Lee, N. G. Gotts, G. von Helden, and M. T. Bowers, Science 267, 999 (1995).

    Article  CAS  Google Scholar 

  37. S. Wei, B. C. Guo, J. Purnell, S. Buzza, and A. W. Castleman, Jr., Science 256, 818 (1992).

    CAS  Google Scholar 

  38. J. S. Pilgrim, and M. A. Duncan, J. Am. Chem. Soc. 115, 9724 (1993); J. S. Pilgrim, and M. A. Duncan, Int. J. Mass Spectrom. Ion Processes 138, 283 (1994).

    Article  CAS  Google Scholar 

  39. B. V. Reddy, and S. N. Khanna, Chem. Phys. Lett. 209, 104 (1993); J. Phys. Chem. 98, 9446 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cheng, H., Wang, LS. (1999). Quantum Mechanical Modeling of Structure Evolution of Transition Metal Clusters and Metallocarbohedrenes. In: Howard, J.A.K., Allen, F.H., Shields, G.P. (eds) Implications of Molecular and Materials Structure for New Technologies. NATO Science Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4653-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4653-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5817-6

  • Online ISBN: 978-94-011-4653-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics